首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun R  Cubaud T 《Lab on a chip》2011,11(17):2924-2928
We experimentally study the dissolution of carbon dioxide bubbles into common liquids (water, ethanol, and methanol) using microfluidic devices. Elongated bubbles are individually produced using a hydrodynamic focusing section into a compact microchannel. The initial bubble size is determined based on the fluid volumetric flow rates of injection and the channel geometry. By contrast, the bubble dissolution rate is found to depend on the inlet gas pressure and the fluid pair composition. For short periods of time after the fluids initial contact, the bubble length decreases linearly with time. We show that the initial rate of bubble shrinkage is proportional to the ratio of the diffusion coefficient and the Henry's law constant associated with each fluid pair. Our study shows the possibility to rapidly impregnate liquids with CO(2) over short distances using microfluidic technology.  相似文献   

2.
A thin flow-focusing microfluidic channel is evaluated for generating monodisperse liquid droplets. The microfluidic device is used in its native state, which is hydrophilic, or treated with OTS to make it hydrophobic. Having both hydrophilic and hydrophobic surfaces allows for creation of both oil-in-water and water-in-oil emulsions, facilitating a large parameter study of viscosity ratios (droplet fluid/continuous fluid) ranging from 0.05 to 96 and flow rate ratios (droplet fluid/continuous fluid) ranging from 0.01 to 2 in one geometry. The hydrophilic chip provides a partially-wetting surface (contact angle less than 90°) for the inner fluid. This surface, combined with the unusually thin channel height, promotes a flow regime where the inner fluid wets the top and bottom of the channel in the orifice and a stable jet is formed. Through confocal microscopy, this fluid stabilization is shown to be highly influenced by the contact angle of the liquids in the channel. Non-wetting jets undergo breakup and produce drops when the jet is comparable to or smaller than the channel thickness. In contrast, partially-wetting jets undergo breakup only when they are much smaller than the channel thickness. Drop sizes are found to scale with a modified capillary number based on the total flow rate regardless of wetting behavior.  相似文献   

3.
Zhao Y  Cho SK 《Lab on a chip》2007,7(2):273-280
This paper describes various manipulations of micro air bubbles using electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating. First, in order to understand the response of bubbles to EWOD, the contact angle modulation is measured in a capped air bubble and confirmed to be in good agreement with the Lippmann-Young equation until saturation. Based on the contact angle measurement, testing devices for the bubble manipulations are designed and fabricated. Sequential activations of patterned electrodes generate continuous bubble transportations. Bubble splitting is successfully realized by activating a single electrode positioned in the middle of bubble base. However, it is found that there are criteria that make splitting possible only in certain conditions. For successful splitting, smaller channel gap, larger bubble size, wider splitting electrode and/or larger contact angle changes by EWOD are preferred. These criteria are verified by a series of experiments as well as a static analysis. Bubble merging is achieved by moving bubbles towards each other in two different channel configurations: (1) channel I, where bubbles are in contact with the bottom channel plate only, and (2) channel II, where bubbles in contact with the top as well as bottom channel plates. Furthermore, eliminating a bubble to the ambient air is accomplished. All the bubble manipulation techniques may provide a versatile integrated platform not only to manipulate micro objects by utilizing micro bubbles as micro carriers, but also to enable a discrete bubble-based gas analysis system.  相似文献   

4.
Analysis of pressure-driven air bubble elimination in a microfluidic device   总被引:1,自引:0,他引:1  
Kang JH  Kim YC  Park JK 《Lab on a chip》2008,8(1):176-178
We report an analysis of pressure-driven bubble elimination for a gas-permeable microfluidic device. In this study, we described bubble elimination in a microfluidic device employing a gas permeation model and calculated the removal efficiency of bubbles. The correction factor for the simplified model was estimated with respect to the applied pressure. Based on the established model, the required time to remove a trapped bubble with a certain area was shown to be within an error of 11.58% by comparison with experimental results. Exploiting the model equation, we were able to completely remove the air bubbles appearing during the process of filling a microfluidic device with an aqueous solution.  相似文献   

5.
This article describes the process of formation of droplets and bubbles in microfluidic T-junction geometries. At low capillary numbers break-up is not dominated by shear stresses: experimental results support the assertion that the dominant contribution to the dynamics of break-up arises from the pressure drop across the emerging droplet or bubble. This pressure drop results from the high resistance to flow of the continuous (carrier) fluid in the thin films that separate the droplet from the walls of the microchannel when the droplet fills almost the entire cross-section of the channel. A simple scaling relation, based on this assertion, predicts the size of droplets and bubbles produced in the T-junctions over a range of rates of flow of the two immiscible phases, the viscosity of the continuous phase, the interfacial tension, and the geometrical dimensions of the device.  相似文献   

6.
This paper describes the behavior of bubbles suspended in a carrier liquid and moving within microfluidic networks of different connectivities. A single-phase continuum fluid, when flowing in a network of channels, partitions itself among all possible paths connecting the inlet and outlet. The flow rates along different paths are determined by the interaction between the fluid and the global structure of the network. That is, the distribution of flows depends on the fluidic resistances of all channels of the network. The movement of bubbles of gas, or droplets of liquid, suspended in a liquid can be quite different from the movement of a single-phase liquid, especially when they have sizes slightly larger than the channels, so that the bubbles (or droplets) contribute to the fluidic resistance of a channel when they are transiting it. This paper examines bubbles in this size range; in the size range examined, the bubbles are discrete and do not divide at junctions. As a consequence, a single bubble traverses only one of the possible paths through the network, and makes a sequence of binary choices ("left" or "right") at each branching intersection it encounters. We designed networks so that, at each junction, a bubble enters the channel into which the volumetric flow rate of the carrier liquid is highest. When there is only a single bubble inside a network at a time, the path taken by the bubble is, counter-intuitively, not necessarily the shortest or the fastest connecting the inlet and outlet. When a small number of bubbles move simultaneously through a network, they interact with one another by modifying fluidic resistances and flows in a time dependent manner; such groups of bubbles show very complex behaviors. When a large number of bubbles (sufficiently large that the volume of the bubbles occupies a significant fraction of the volume of the network) flow simultaneously through a network, however, the collective behavior of bubbles-the fluxes of bubbles through different paths of the network-can resemble the distribution of flows of a single-phase fluid.  相似文献   

7.
The interaction between two bubbles coated with glass particles in the presence of a cationic surfactant (cetyltrimethylammonium bromide, CTAB) was studied experimentally. The time taken for two bubbles to coalesce was determined as a function of the fractional coverage of the surface by particles. The results suggested that the coalescence time increases with the bubble surface coverage. Interestingly, it was found that although the particles did not have any physical role in film rupture at low surface coverage, they still added resistance to film drainage. For particle-loaded bubbles, the initial resistance was due to the lateral capillary interactions between particles on the interface, which hold the particles firmly together. The coalescence dynamics of bubbles was also observed to be affected by the presence of attached particles.  相似文献   

8.
The pressure drop along rectangular microchannels containing bubbles   总被引:2,自引:0,他引:2  
This paper derives the difference in pressure between the beginning and the end of a rectangular microchannel through which a flowing liquid (water, with or without surfactant, and mixtures of water and glycerol) carries bubbles that contact all four walls of the channel. It uses an indirect method to derive the pressure in the channel. The pressure drop depends predominantly on the number of bubbles in the channel at both low and high concentrations of surfactant. At intermediate concentrations of surfactant, if the channel contains bubbles (of the same or different lengths), the total, aggregated length of the bubbles in the channel is the dominant contributor to the pressure drop. The difference between these two cases stems from increased flow of liquid through the "gutters"-the regions of the system bounded by the curved body of the bubble and the corners of the channel-in the presence of intermediate concentrations of surfactant. This paper presents a systematic and quantitative investigation of the influence of surfactants on the flow of fluids in microchannels containing bubbles. It derives the contributions to the overall pressure drop from three regions of the channel: (i) the slugs of liquid between the bubbles (and separated from the bubbles), in which liquid flows as though no bubbles were present; (ii) the gutters along the corners of the microchannels; and (iii) the curved caps at the ends of the bubble.  相似文献   

9.
This paper demonstrates a simple and easy setting up of a fused‐silica capillary‐assembled microfluidic system (μCE). This system incorporates a split‐flow pressure injection of the sample into a microfluidic system made from PDMS and a short (~20 cm) length of fused‐silica capillary as a separation unit. The on‐capillary detection was carried out by fiber optic spectrometry. A mixture of six cephalosporin antibiotics was separated in the μCE system and the obtained results were compared to those achievable by conventional CE. The six components could be separated within 8.5 min with the number of theoretical plates around 10 000.  相似文献   

10.
An in situ bubble‐stretching (ISBS) model has been proposed on the basis of an analysis of the dispersion process of inorganic additives in polymers. The ISBS model is applicable to a dispersion of solid granular aggregates in polymer melts because the dispersed phase itself serves as a nucleation agent, giving rise to bubbles that expand at the surface of the microgranules and their aggregates. In terms of bidirectional stretching, the ISBS process can increase the degrees of freedom of granule dispersion, which favors more homogeneous dispersion. According to theoretical predictions and indirect experimental estimations of the dispersion of nanoscale CaCO3 and nanoscale hydrotalcite in high‐density polyethylene (HDPE), when the bubble expands, the stretching rate of the polymer melt on the bubble wall can reach 105–106 s?1. The field emission scanning electron microscopic images indicated that the granular size of dispersed CaCO3 and hydrotalcite in HDPE with the ISBS method is about 60–80 nm, two orders of magnitude smaller than that attained with a shearing rate of 103 s?1 in a capillary rheometer. It is also predicted that elastic bubble oscillations may be generated through suitable control of process parameters and that their oscillatory frequency can be in the ultrasound range. This type of bubble oscillation can also promote dispersion. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1051–1058, 2003  相似文献   

11.
The adhesion forces holding micron-sized particles to solid surfaces can be studied through the detachment forces developed by the transit of an air–liquid interface in a capillary. Two key variables affect the direction and magnitude of the capillary detachment force: (i) the thickness of the liquid film between the bubble and the capillary walls, and (ii) the effective angle of the triple phase contact between the particles and the interface. Variations in film thickness were calculated using a two-phase flow model. Film thickness was used to determine the time-variation of the capillary force during transit of the bubble. The curve for particle detachment was predicted from the calculated force. This curve proved to be non-linear and gave in situ information on the effective contact angle developing at the particle–bubble interface during detachment. This approach allowed an accurate determination of the detachment force. This theoretical approach was validated using latex particles 2 μm in diameter.  相似文献   

12.
We designed and fabricated microfluidic devices with serpentine separation channels and asymmetrically tapered turns, thus allowing high efficiency separations and minimizing band broadening associated with the “racetrack” effect. We evaluated the performance of these devices by measuring the variation in separation efficiency with separation length, electric field strength, taper ratio of the turns, and number of turns. N‐Glycans derived from ribonuclease B and labeled with 8‐aminopyrene‐1,3,6‐trisulfonic acid were electrophoretically separated on serpentine channels with separation lengths of 11, 18, 22, and 36 cm at electric field strengths from 750 to 1750 V/cm. Separations on the 36‐cm channel produced plate numbers up to 940 000 with an analysis time under 3.1 min, whereas separations on the 22‐cm channel had a shorter analysis time (less than 1.25 min), still with respectable efficiencies (up to 600 000 plates). Turn‐induced dispersion was minimized with taper ratios 2 and 3, whereas having two or four 180° turns along with the separation length did not impact the overall efficiency. The developed device was used to analyze native and desialylated N‐glycans derived from the blood serum of an ovarian cancer patient and a disease‐free individual. Separation efficiencies similar to that achieved with the model glycans from ribonuclease B were attained for these biological samples.  相似文献   

13.
《Electrophoresis》2017,38(13-14):1764-1770
Gel electrophoresis is one of the most applied and standardized tools for separation and analysis of macromolecules and their fragments in academic research and in industry. In this work we present a novel approach for conducting on‐demand electrophoretic separations of DNA molecules in open microfluidic (OM) systems on planar polymer substrates. The approach combines advantages of slab gel, capillary‐ and chip‐based methods offering low consumable costs (<0.1$) circumventing cost‐intensive microfluidic chip fabrication, short process times (5 min per analysis) and high sensitivity (4 ng/μL dsDNA) combined with reasonable resolution (17 bases). The open microfluidic separation system comprises two opposing reservoirs of 2–4 μL in volume, a semi‐contact written gel line acting as separation channel interconnecting the reservoirs and sample injected into the line via non‐contact droplet dispensing and thus enabling the precise control of the injection plug and sample concentration. Evaporation is prevented by covering aqueous structures with PCR‐grade mineral oil while maintaining surface temperature at 15°C. The liquid gel line exhibits a semi‐circular cross section of adaptable width (∼200–600 μm) and height (∼30–80 μm) as well as a typical length of 15–55 mm. Layout of such liquid structures is adaptable on‐demand not requiring time consuming and repetitive fabrication steps. The approach was successfully demonstrated by the separation of a standard label‐free DNA ladder (100–1000 bp) at 100 V/cm via in‐line staining and laser induced fluorescent end‐point detection using an automated prototype.  相似文献   

14.
The formation of bubbles in capillary electrochromatography (CEC) is well documented: possible origins include Joule heating and variations in EOF velocity on passing from the stationary phase through the frit and into the open tube. Methods for the prevention of bubble formation are discussed which are confirmed by experimental results. Using frit lengths varying from 1 mm to 6 mm it is shown how frit length is directly related to the likelihood of bubble formation and how this is affected by applied voltage. It is shown that the change in applied voltage across a capillary affects the formation of bubbles and also that rebonding octadecylsilane (ODS) onto the silica frit after formation of the frit can minimize the formation of bubbles and how this effects the chromatography. A method is also described for increasing the robustness of silica capillaries using a column coupler along with modifications made to conventional capillary electrophoresis equipment to cater for CEC.  相似文献   

15.
Wang S  Huang X  Yang C 《Lab on a chip》2011,11(12):2081-2087
Due to small channel dimensions and laminar flows, mixing in microfluidic systems is always a challenging task, especially for high viscous fluids. Here we report a method of enhancing microfluidic mixing for high viscous fluids using acoustically induced bubbles. The bubbles can be generated in an acoustically profiled microfluidic structure by using a piezoelectric disk activated at a working frequency range between 1.5 kHz and 2 kHz. The mixing enhancement is achieved through interactions between the oscillating bubbles and fluids. Both experimental studies and numerical simulations are conducted. In the experiments, DI water-glycerol mixture solutions with various viscosities were used. The results, based on the mixing efficiency calculated from experimentally acquired fluorescent images, showed that good mixing can occur in the DI water-glycerol solutions with their maximum viscosity up to 44.75 mPa s, which to our best knowledge is the highest viscosity of fluids in microfluidic mixing experiments. To explain the mechanisms of bubble generation, the numerical simulation results show that, corresponding to the actuations at the working frequency range used in the experiment, there exists a low pressure region where the pressure is lower than the water vapor pressure in the DI water-glycerol solutions, resulting in the generation of bubbles.  相似文献   

16.
A two-dimensional theoretical model for solids-coated, or "armored," bubbles shows how the armor can support a liquid-vapor interface of reduced or reversed curvature between the particles, giving the bubble zero or even negative capillary pressure. The inward capillary force pulling the particles into the center of the bubble are balanced by large contact forces between the particles in the armor. Thus the bubble is stabilized against dissolution of gas into surrounding liquid, which otherwise would rapidly collapse the bubble. The stresses between particles in such cases are large and could drive sintering of the particles into a rigid framework. Earlier work on solids-coated bubbles assumed that solids can freely enter or leave the bubble surface as the bubble shrinks or expands. In such a case, armored bubbles would not be stable to gas dissolution into surrounding liquid. A new free-energy analysis, however, suggests that a shrunken bubble would not spontaneously expel a solid particle from its armor to relieve stress and allow the bubble to shrink further. Implications and limitations of the theory are discussed. Copyright 1999 Academic Press.  相似文献   

17.
In this paper, glucose oxidase (GOx) was employed to construct a functional film on the poly(dimethylsiloxane) (PDMS) microfluidic channel surface and apply to perform electrophoresis coupled with in‐channel electrochemical detection. The film was formed by sequentially immobilizing poly(diallyldimethylammonium chloride) (PDDA) and GOx to the microfluidic channel surface via layer‐by‐layer (LBL) assembly. A group of neurotransmitters (5‐hydroxytryptamine, 5‐HT; dopamine, DA; epinephrine, EP; dobuamine, DBA) as a group of separation model was used to evaluate the effect of the functional PDMS microfluidic devices. Electroosmotic flow (EOF) in the modified PDMS microchannel was well suppressed compared with that in the native one. Experimental conditions were optimized in detail. As expected, these analytes were efficiently separated within 110 s in a 3.7 cm long separation channel and successfully detected at a single carbon fiber electrode. Good performances were attributed to the decreased EOF and the interactions of analytes with the immobilized GOx on the PDMS surface. The theoretical plate numbers were 2.19×105, 1.89×105, 1.76×105, and 1.51×105 N/m at the separation voltage of 1000 V with the detection limits of 1.6, 2.0, 2.5 and 6.8 μM (S/N=3) for DA, 5‐HT, EP and DBA, respectively. In addition, the modified PDMS channels had long‐term stability and excellent reproducibility.  相似文献   

18.
《Electrophoresis》2018,39(7):957-964
Proteinuria is an established risk marker for progressive renal function loss and patients would significantly benefit from a point‐of‐care testing. Although extensive work has been done to develop the microfluidic devices for the detection of urinary protein, they need the complicated operation and bulky peripherals. Here, we present a rapid, maskless 3D prototyping for fabrication of capillary fluidic circuits using laser engraving. The capillary circuits can be fabricated in a short amount of time (<10 min) without the requirements of clean‐room facilities and photomasks. The advanced capillary components (e.g., trigger valves, retention valves and retention bursting valves) were fabricated, enabling the sequential liquid delivery and sample‐reagent mixing. With the integration of smartphone‐based detection platform, the microfluidic device can quantify the urinary protein via a colorimetric analysis. By eliminating the bulky and expensive equipment, this smartphone‐based detection platform is portable for on‐site quantitative detection.  相似文献   

19.
Minimizing misalignments during the interconnection of microfluidic modules is extremely critical to develop a fully integrated microfluidic device. Misalignments arising during chip‐to‐chip or world‐to‐chip interconnections can be greatly detrimental to efficient functioning of microfluidic devices. To address this problem, we have performed numerical simulations to investigate the effect of misalignments arising in three types of interconnection methods: (i) end‐to‐end interconnection (ii) channel overlap when chips are stacked on top of each other, and (iii) tube‐in‐reservoir misalignment occurring due to the offset between the external tubing and the reservoir. For the case of end‐to‐end interconnection, the effect of misalignment was investigated for 0, 13, 50, 58, and 75% reduction in the available flow area at the location of geometrical misalignment. In the channel overlap interconnection method, various possible misalignment configurations were simulated by maintaining the same amount of misalignment (75% flow area reduction). The effect of misalignment in a tube‐in‐reservoir interconnection was investigated by positioning the tube at an offset of 164 μm from the reservoir center. All the results were evaluated in terms of the equivalent length of a straight pipe. The effect of Reynolds number (Re) was also taken into account by performing additional simulations of aforementioned cases at Re ranging between 0.075 ≤ Re ≤ 75. Correlations were developed and the results were interpreted in terms of equivalent length (Le). Equivalent length calculations revealed that the effect of misalignment in tube‐in‐reservoir interconnection method was the least significant when compared to the other two methods of interconnection.  相似文献   

20.
Amphiphilic diblock copolymers consisting of a hydrophobic core containing a polymerized ionic liquid and an outer shell composed of poly(N‐isoprolylacrylamide) were investigated by capillary electrophoresis and asymmetrical flow‐field flow fractionation. The polymerized ionic liquid comprised poly(2‐(1‐butylimidazolium‐3‐yl)ethyl methacrylate tetrafluoroborate) with a constant block length (n = 24), while the length of the poly(N‐isoprolylacrylamide) block varied (n = 14; 26; 59; 88). Possible adsorption of the block copolymer on the fused silica capillary, due to alterations in the polymeric conformation upon a change in the temperature (25 and 45 °C), was initially studied. For comparison, the effect of temperature on the copolymer conformation/hydrodynamic size was determined with the aid of asymmetrical flow‐field flow fractionation and light scattering. To get more information about the hydrophilic/hydrophobic properties of the synthesized block copolymers, they were used as a pseudostationary phase in electrokinetic chromatography for the separation of some model compounds, that is, benzoates and steroids. Of particular interest was to find out whether a change in the length or concentration of the poly(N‐isoprolylacrylamide) block would affect the separation of the model compounds. Overall, our results show that capillary electrophoresis and asymmetrical flow‐field flow fractionation are suitable methods for characterizing conformational changes of such diblock copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号