首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lability of B=B, B?P, and B–halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes undergo cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange.  相似文献   

2.
The synthesis of base‐stabilized boryl and borylene complexes is reported. An N‐heterocyclic carbene (NHC)‐stabilized iron–dihydroboryl complex was prepared by two different routes including methane liberation and salt elimination. A range of base‐stabilized iron–dichloroboryl complexes was prepared by addition of Lewis bases to boryl complexes. Base‐stabilized, cationic monochloroborylene complexes were synthesized from these boryl complexes by halide abstraction by using weakly coordinating anions.  相似文献   

3.
4.
5.
Herein we propose for the first time the utilization of a metal complex for forming water‐in‐supercritical CO2 (scCO2) microemulsions. The water solubility in the metal‐complex‐stabilized microemulsion is significantly improved compared with the conventional water‐in‐scCO2 microemulsions stabilized by hydrocarbons. Such a microemulsion provides a promising route for the in situ CO2 reduction catalyzed by a metal complex at the water/scCO2 interface.  相似文献   

6.
The visible light irradiation of the [(η5-C6H7)Fe(η-C6H6)]+ cation (1) in acetonitrile resulted in the substitution of the benzene ligand to form the labile acetonitrile species [(η5-C6H7)Fe(MeCN)3]+ (2). The reaction of 1 with ButNC in MeCN produced the stable isonitrile complex [(η5-C6H7)Fe(ButNC)3]+ (3). The photochemical reaction of cation 1 with pentaphosphaferrocene Cp*Fe(η-cyclo-P5) afforded the triple-decker cation with the bridging pentaphospholyl ligand, [(η5-C6H7)Fe(μ-η:η-cyclo-P5)FeCp*]+ (4). The latter complex was also synthesized by the reaction of cation 2 with Cp*Fe(η-cyclo-P5). The structure of the complex [3]PF6 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2088–2091, November, 2007.  相似文献   

7.
8.
The authors of the Communication “Stabilization of Low‐Valent Iron(I) in a High‐Valent Vanadium(V) Oxide Cluster” reply to a Comment by Dr. Sproules, who offered an alternative interpretation of the metal oxidation states in the two electron reduced iron vanadate (NH2Me2)[(FeCl)V12O32Cl]4?.  相似文献   

9.
10.
Neutral half‐sandwich organometallic ruthenium(II) complexes of the type [(η6‐cymene)RuCl2(L)] ( H1 – H10 ), where L represents a heterocyclic ligand, have been synthesized and characterized spectroscopically. The structures of five complexes were also established by single‐crystal X‐ray diffraction confirming a piano‐stool geometry with η6 coordination of the arene ligand. Hydrogen bonding between the N? H group of the heterocycle and a chlorine atom attached to Ru stabilizes the metal–ligand interaction. Complexes coordinated to a mercaptobenzothiazole framework ( H1 ) or mercaptobenzoxazole ( H6 ) showed high cytotoxicity against several cancer cells but not against normal cells. In vitro studies have shown that the inhibition of cancer cell growth involves primarily G1‐phase arrest as well as the generation of reactive oxygen species (ROS). The complexes are found to bind DNA in a non‐intercalative fashion and cause unwinding of plasmid DNA in a cell‐free medium. Surprisingly, the cytotoxic complexes H1 and H6 differ in their interaction with DNA, as observed by biophysical studies, they either cause a biphasic melting of the DNA or the inhibition of topoisomerase IIα activity, respectively. Substitution of the aromatic ring of the heterocycle or adding a second hydrogen‐bond donor on the heterocycle reduces the cytotoxicity.  相似文献   

11.
A supramolecular approach that uses hydrogen‐bonding interaction as a driving force to accomplish exceptional self‐sorting in the formation of imine‐based covalent organic cages is discussed. Utilizing the dynamic covalent chemistry approach from three geometrically similar dialdehydes ( A , B , and D ) and the flexible triamine tris(2‐aminoethyl)amine ( X ), three new [3+2] self‐assembled nanoscopic organic cages have been synthesized and fully characterized by various techniques. When a complex mixture of the dialdehydes and triamine X was subjected to reaction, it was found that only dialdehyde B (which has OH groups for H‐bonding) reacted to form the corresponding cage B3X2 selectively. Surprisingly, the same reaction in the absence of aldehyde B yielded a mixture of products. Theoretical and experimental investigations are in complete agreement that the presence of the hydroxyl moiety adjacent to the aldehyde functionality in B is responsible for the selective formation of cage B3X2 from a complex reaction mixture. This spectacular selection was further analyzed by transforming a nonpreferred (non‐hydroxy) cage into a preferred (hydroxy) cage B3X2 by treating the former with aldehyde B . The role of the H‐bond in partner selection in a mixture of two dialdehydes and two amines has also been established. Moreover, an example of unconventional imine bond metathesis in organic cage‐to‐cage transformation is reported.  相似文献   

12.
High versus low : The high‐yield generation of a synthetic high‐spin oxoiron(IV) complex, [FeIV(O)(TMG3tren)]2+ (see picture, TMG3tren = 1,1,1‐tris{2‐[N2‐(1,1,3,3‐tetramethylguanidino)]ethyl}amine), has been achieved by using the very bulky tetradentate TMG3tren ligand, in order to both sterically protect the oxoiron(IV) moiety and enforce a trigonal bipyramidal geometry at the iron center, for which an S=2 ground state is favored.

  相似文献   


13.
14.
15.
16.
Although long known, 1,2‐ and 1,3‐dicarbonyl compounds have recently come more and more to prevalence as ideal substrates for the invention of new stereoselective multiple bond‐forming transformations (MBFTs). Herein, a critical appraisal is presented of some of the most spectacular of these MBFTs, which allow the formation from three up to six bonds in highly step‐ and atom‐economical processes.  相似文献   

17.
18.
Reaction of bromoacylsilane 1 (pink solution) with tBu2MeSiLi (3.5 equiv) in a 4:1 hexane:THF solvent mixture at ?78 °C to room temperature yields the solvent separated ion pair (SSIP) of silenyl lithium E‐[(tBuMe2Si)(tBu2MeSi)C=Si(SiMetBu2)]? [Li?4THF]+ 2 a (green–blue solution). Removal of the solvent and addition of benzene converts 2 a into the corresponding contact ion pair (CIP) 2 b (violet–red solution) with two THF molecules bonded to the lithium atom. The 2 a ? 2 b interconversion is reversible upon THF? benzene solvent change. Both 2 a and 2 b were characterized by X‐ray crystallography, NMR and UV/Vis spectroscopy, and theoretical calculations. The degree of dissociation of the Si?Li bond has a large effect on the visible spectrum (and thus color) and on the silenylic 29Si NMR chemical shift, but a small effect on the molecular structure. This is the first report of the X‐ray molecular structure of both the SSIP and the CIP of any R2E=E′RM species (E=C, Si; E′=C, Si; M=metal).  相似文献   

19.
Organometallic Compounds of the Lanthanides. 139 Mixed Sandwich Complexes of the 4 f Elements: Enantiomerically Pure Cyclooctatetraenyl Cyclopentadienyl Complexes of Samarium and Lutetium with Donor‐Functionalized Cyclopentadienyl Ligands The reactions of [K{(S)‐C5H4CH2CH(Me)OMe}], [K{(S)‐C5H4CH2CH(Me)NMe2}] and [K{(S)‐C5H4CH(Ph)CH2NMe2}] with the cyclooctatetraenyl lanthanide chlorides [(η8‐C8H8)Ln(μ‐Cl)(THF)]2 (Ln = Sm, Lu) yield the mixed cyclooctatetraenyl cyclopentadienyl lanthanide complexes [(η8‐C8H8)Sm{(S)‐η5 : η1‐C5H4CH2CH(Me)OMe}] ( 1 a ), [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH2CH(Me)NMe2}] (Ln = Sm ( 2 a ), Lu ( 2 b )) and [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH(Ph)CH2NMe2}] (Ln = Sm ( 3 a ), Lu ( 3 b )). For comparison, the achiral compounds [(η8‐C8H8)Ln{η5 : η1‐C5H4CH2CH2NMe2}] (Ln = Sm ( 4 a ), Lu ( 4 b )) are synthesized in an analogous manner. 1H‐, 13C‐NMR‐, and mass spectra of all new compounds as well as the X‐ray crystal structures of 3 b and 4 b are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号