首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and reliable high performance liquid chromatographic (HPLC) method has been developed and validated for the study of fingerprint chromatograms of extracts from the leaves of Tripterygium wilfordii Hook. F. (TWHF) and for controlling the quality of the herb. HPLC separation of the extracts was performed on a Lichrospher RP-18 column and detected by ultraviolet absorbance at 210 nm. The column temperature was maintained at 35 degrees C. A mobile phase composed of acetonitrile:H2O in the ratio of 39:61 (v/v) was found to be most suitable for this separation at a flow rate of 0.8 mL/min with isocratic elution. Under the chromatographic conditions described, the peak profile of the 10 components collected within 35 min made up the fingerprint of the extracts from leaves of TWHF with universal features. The fingerprint chromatograms had a good stability, precision, and reproducibility. The similarity of the extracts from leaves of TWHF collected in summer and winter was studied with triptolide as a reference peak. The method is suitable for differentiation of extracts from the leaves of TWHF, and can be used as a quality control method for this herb.  相似文献   

2.
A capillary zone electrophoresis method was developed for the simultaneous determination of seven phenolic acids, including protocatechuic aldehyde ( 1 ), salvianolic acid C ( 2 ), rosmarinic acid ( 3 ), salvianolic acid A ( 4 ), danshensu ( 5 ), salvianolic acid B ( 6 ), and protocatechuic acid ( 7 ), in Danshen and related medicinal plants. A running buffer composed of 20 mM sodium tetraborate adjusted to pH 9.0, and containing 12 mM β‐cyclodextrin as modifier. Baseline separation was achieved within 17 min running at the voltage of 20 kV, temperature of 25°C and detection wavelength of 280 nm. The relative standard deviations of migration time ranged from 0.2 to 0.7% and the peak area ranged from 1.5 to 3.7% for the seven analytes, indicating the good repeatability of the proposed method. The method was extensively validated by evaluating the linearity (R2 ≥ 0.9992), limits of detection (0.14–0.36 μg/mL), limits of quantification (0.47–1.19 μg/mL), and recovery (96.0–102.6%). Under the optimum conditions, samples of Danshen and related medicinal plants were analyzed using the developed method with high separation efficiency.  相似文献   

3.
This study developed and validated a trace-level quantification inorganic impurities method using reversed-phase HPLC and performed the robustness check using quality-by-design approach by varying the multiple factors simultaneously. This method is economical and simple and exhibits its stability-indicating nature [for the determination of ferrocyanide ([Fe(CN)₆]4–), ferricyanide ([Fe(CN)6]3−), nitrate (NO3), and nitrite (NO2)] in sodium nitroprusside (SNP) drug substance and liquid dosage form. Chromatographic separation was achieved using a USP L43 column (ACE PFP, 150 × 4.6 mm, 3 μm) with a simple isocratic elution. The buffer consists of potassium dihydrogen phosphate (50 mM), tetrabutylammonium hydrogen sulfate (9 mM), and tetrabutylammonium hydroxide (25 mM). The buffer pH was adjusted to 7.2 with tetrabutylammonium hydroxide. The mobile phase was mixed with the buffer and acetonitrile (68:32 v/v). The flow rate was 0.8 mL/min, column temperature was maintained at 30°C, and injection volume was 5.0 μL. The SNP impurities were monitored at 225 nm using a UV detector. Further, the method was validated per the International Council for Harmonisation (ICH) guidelines, and forced degradation studies were carried out under different stress conditions. The detector responses were plotted against concentrations, and correlation was linear (r > 0.999) over the range of 0.8–7.5 μg/mL for ferricyanide; 1.0–37.5 μg/mL for SNP; and 0.2–7.5 μg/mL for ferrocyanide, nitrite, and nitrate. The method repeatability was established for all the impurities with relative standard deviation (%), and the results were found to be less than 2.0.  相似文献   

4.
In this paper, the simultaneous separation of several polyphenols such as (+)‐catechin, (–)‐epicatechin, (–)‐epigallocatechin, theophylline, caffeine in green and black teas by capillary electrochromatography (CEC) was developed. Several experimental parameters such as stationary phase type, mobile phase composition, buffer and pH, inner diameter of the columns, sample injection, were evaluated to obtain the complete separation of the analysed compounds. Baseline resolution of the studied polyphenols was achieved within 30 min by using a capillary column (id 100 μm) packed with bidentate C18 particles for 24.5 cm and a mobile phase composed of 5 mM ammonium acetate buffer pH 4 with H2O/ACN (80:20, v/v). The applied voltage and the temperature were set at 30 kV and 20°C. Precision, detection and quantification limits, linearity, and accuracy were investigated. A good linearity (R2 > 0.9992) was achieved over a concentration working range of 2–100 μg/mL for all the analytes. LOD and LOQ were 1 and 2 μg/mL, respectively, for all studied compounds. The CEC method was applied to the analysis of those polyphenols in green and black tea samples after an extraction procedure. Good recovery data from accuracy studies ranged between 90% and 112% for all analytes.  相似文献   

5.
A simple and sensitive stability-indicating chiral HPLC method has been developed and validated per International Conference on Harmonization guidelines for the determination of enantiomeric purity of eluxadoline (Exdl). The impact of different mobile phase compositions and chiral stationary phases on the separation of Exdl enantiomer along with process- and degradation-related impurities has been studied. Homogeneity of Exdl and stable results of Exdl enantiomer in all degraded samples reveal the fact that the proposed method was specific (stability indicating). Amylose tris(3,5-dichlorophenyl carbamate) stationary phase column Chiralpak IE-3 (150 × 4.6 mm, 3 μm) provided better resolution with polar organic solvents than cellulose derivative, crown ether, and zwitterion stationary phases and nonpolar solvents. The mobile phase consisted of acetonitrile, tetrahydrofuran, methanol, butylamine, and acetic acid in the ratio of 500:500:20:2:1.5 (v/v/v/v/v). Isocratic elution was performed at a flow rate of 1.0 mL/min, column temperature of 35°C, injection volume of 10 μL, and UV detection of 240 nm. The United States Pharmacopeia (USP) resolution of the Exdl enantiomer was found to be more than 4.0 within a 65-min run time. Exdl enantiomer detector response linearity over the concentration range of 0.859–4.524 μg/mL was found to be R2 = 0.9985. The limit of detection, limit of quantification, and average percentage recovery values were established as 0.283 μg/mL, 0.859 μg/mL, and 96.0, respectively.  相似文献   

6.
A rapid and sensitive CEC method with methacrylate ester‐based monolithic column has been developed for separation and determination of five coumarins (byakangelicin, oxypeucedanin hydrate, xanthotoxol, 5‐hydroxy‐8‐methoxypsoralen and bergapten) in Angelica dahurica extract. Surfactant sodium desoxycholate (SDC) was introduced into the mobile phase as the pseudostationary to dynamically increase the selectivity of analytes instead of increasing the hydrophobicity of stationary phase. In addition, other factors, pH of phosphate buffer, ACN content and applied voltage, for instance, have also an obvious effect on the resolution but little on the retention time. Satisfactory separation of these five coumarins was achieved within 6 min under a 30:70 v/v ACN–buffer containing 20 mM sodium dihydrogen phosphate (NaH2PO4) and 0.25 mM SDC at pH 2.51. The RSDs of intraday and interday for relative peak areas were less than 3.0% and 4.7%, respectively; and the recoveries were between 87.5% and 95.0%. The LODs were lower than 0.15 μg/mL and the LOQs were lower than 0.30 μg/mL, respectively, while calibration curves showed a good linearity (r2 > 0.9979). Finally, five target coumarins from the crude extracts of A. dahurica were separated, purified, and concentrated by D‐101 macroporous resin, and were successfully separated and quantitatively determined within 6 min.  相似文献   

7.
A supercritical fluid chromatography with electrochemical detection system was developed for the simultaneous determination of tocopherol and tocotrienol isomers. The supercritical fluid chromatography with electrochemical detection system was connected with an additional pump to create a flow path to add a supporting electrolyte solution. The supporting electrolyte solution was mixed with a mobile phase in a post-column fashion, enabling the independent control of the separation and detection. After optimization of the measurement conditions, vitamin E isomers and an internal standard substance (2,2,5,7,8-pentamethyl-6-hydroxychroman) were separated within 30 min using a mixture of supercritical carbon dioxide and methanol (99:1, v/v) as a mobile phase and a cyanopropyl column (4.6 mm inner diameter × 250 mm length, 5 μm). For the electrochemical detection, methanol containing 1.0 mol/L ammonium acetate was used as a supporting electrolyte solution, and the applied potential was set at +0.8 V. This analytical method showed good linearity (5–100 μg/mL) and repeatability (less than 2.5% relative standard deviation, n = 6) and was applicable to the determination of tocopherol and tocotrienol isomers in nutrition supplements.  相似文献   

8.
A novel CE method was developed for the separation and determination of three main tropane alkaloids in Flos daturae with a capillary coated by graphene oxide (GO). The GO‐coated capillary was characterized by SEM, energy dispersive X‐ray spectroscopy, and Raman spectroscopy, and the results indicated that the inner surface of the capillary was partially coated by GO. A phosphate solution (40 mM, pH7.0) containing 20% v/v methanol and 30% v/v acetonitrile was used as the running buffer for the analysis of the atropine, scopolamine, and anisodamine. The linear ranges of atropine, scopolamine, and anisodamine was 0.5–200 μg/mL with satisfactory correlation coefficients (R2) > 0.9987, and this novel method provided an efficient separation for three tropane alkaloids as well as a good reproducibility and stability. Finally, the method was successfully applied for the determination of these three tropane alkaloids in plant extracts.  相似文献   

9.
Yu L  Ye H  Zheng L  Chen L  Chu K  Liu X  Xu X  Chen G 《Electrophoresis》2011,32(2):218-222
A new method for separation and determination of amygdalin and its epimer (neoamygdalin) in the epimerization of amygdalin by MEEKC is proposed. For the chiral separation of amygdalin and neoamygdalin, a running buffer composed of 80 mM sodium cholate, 5.0% v/v butan‐1‐ol, 0.5% v/v heptane and 94.5% v/v 30 mM Na2B4O7 buffer (pH 9.00) is proposed. Under optimum conditions, the basic separation of amygdalin and neoamygdalin can be achieved within 7 min. The calibration curve for amygdalin showed excellent linearity in the concentration range of 20–1000 μg/mL with a detection limit of 5.0 μg/mL (S/N=3). The epimerization rate constant of amygdalin in basic microemulsion was first determined by monitoring the concentration changes of amygdalin, and the epimerization rate constant of amygdalin was found to be 2×10?3 min?1 at 25°C under the above optimum microemulsion conditions.  相似文献   

10.
A rapid capillary electrophoretic method for the analysis of three alkylphosphonate drugs (i.e. fosfomycin disodium (FOS), clodronate disodium (CLO) and alendronate sodium (ALN)) was developed by using multiple probe BGE and indirect UV detection. BGE containing 30 mM benzoic acid, 5 mM salicylic acid and 0.5 mM CTAB (pH 3.8), temperature of 30°C, applied voltage of ?30 kV and detection at 220 nm provided baseline separation of all analytes (resolution (R)>2.2) in 3.2 min. EOF reversal by addition of CTAB and negative voltage polarity leading to the co‐EOF flow and short analysis time. Two probe BGE greatly improved peak symmetry. The method showed good linearity (r2>0.999 in ranges of 20–1000 μg/mL for FOS, 100–1000 μg/mL for CLO and 100–750 μg/mL for ALN) repeatablitiy (RSD<2.15%), recovery (99.3–101.1%) and sensitivity (LOD<50 μg/mL). Freshly prepared BGE and sample solutions are essential for the method precision and accuracy. This new method can be utilized for routine analysis of FOS, CLO and ALN in dosage forms because of its efficiency, reliability, speed and simplicity.  相似文献   

11.
A novel generic reverse phase high performance liquid chromatography (RP‐HPLC) method is developed and validated for simultaneous determination of seven pharmaceutically active ingredients, namely, acetaminophen, dextromethorphan, doxylamine, phenylephrine, guaifenesin, caffeine and aspirin. All seven ingredients were quantified in soft gel, syrup and tablet formulations of the over‐the‐counter US‐marketed products, as per the guidelines of the International Conference on Harmonization. The separation was achieved in a 16 min run time on an Agilent Zorbax Phenyl column using a gradient method with two mobile phases. Mobile phase A was 0.15% trifluoro acetic acid in purified water and while mobile phase B was a mixture of acetonitrile and methanol (750:250 v/v) with 0.02% trifluoro acetic acid. The flow rate was 1.0 mL min?1 and injection volume was 10 μL. Detection was performed at 280 nm using a photodiode array detector. As part of the method validation, specificity, linearity, precision and recovery parameters were verified. The concentration and area relationships were linear (R2 > 0.999), over the concentration ranges 20–120 μg mL?1 for acetaminophen, 75–450 μg mL?1 for dextromethorphan, 31.25–187.5 μg mL?1 for doxylamine, 25–150 μg mL?1 for phenylephrine, 25–150 μg mL?1 for aspirin, 6.5–39 μg mL?1 for caffeine and 12–72 μg mL?1 for guaifenesin. The relative standard deviations for precision and intermediate precision were <1.5%. The proposed RP‐HPLC generic method is applicable for routine analysis of cold and cough over‐the‐counter products.  相似文献   

12.
A simple and sensitive bioanalytical method was developed and validated for determination of etoposide in plasma and microdialysis samples of Walker‐256 tumor‐bearing rats. A microdialysis probe was implanted in the center of a subcutaneous tumor and Ringer's solution was used as perfusion medium. Chromatographic separation was conducted on a Shimadzu CLC‐C8 column using a mobile phase consisting of water–acetonitrile (70:30; v/v) adjusted to pH 4.0 ± 0.1 with formic acid at a gradient flow rate of 1.0–0.6 mL/min, an injection volume of 30 μL and UV detection at 210 nm. Microdialysate samples were analyzed without processing and plasma samples (100 μL) were spiked with phenytoin as internal standard (IS) (1 µg/mL) followed by extraction with tert‐butyl methyl ether. The organic layer was evaporated and reconstituted with 100 μL of mobile phase before injection. The methods for plasma and microdialysate were linear in the ranges of 25–10,000 ng/mL and of 10–1500 ng/mL, respectively. All the validation parameters such as intra‐ and inter‐day precision and accuracy and stability were within the limits established by international guidelines. The present method was successfully applied in the investigation of etoposide pharmacokinetics in rat plasma and microdialysate tumor samples following a single 15 mg/kg intravenous dose. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A rapid and cost‐effective method based on microwave‐assisted extraction followed by capillary electrophoresis was developed for simultaneous quantification of seven alkaloids in Corydalis decumbens for the first time. The main parameters affecting microwave‐assisted extraction and capillary electrophoresis separation were investigated and optimized. The optimal microwave‐assisted extraction was performed at 40°C for 5 min using methanol/water (90:10, v/v) as the extracting solvent. Electrophoretic separation was achieved within 15 min using an uncoated fused‐silica capillary (50 μm internal diameter and 27.7 cm effective length) and a 500 mM Tris buffer containing 45% v/v methanol (titrated to pH* 2.86 with H3PO4). The developed method was successfully applied to the quantification of seven alkaloids in Corydalis decumbens obtained from different regions of China. The combination of microwave‐assisted extraction with capillary electrophoresis was an effective method for the rapid analysis of the alkaloids in Corydalis decumbens .  相似文献   

14.
A chiral liquid chromatographic method was developed and validated for the quantification of R‐enantiomer impurity (RE) in WCK 3023 (S‐enantiomer), a new drug substance. The separation was achieved on Chiralpak IA (amylose‐based immobilized chiral stationary phase), using a mobile phase consisting of n‐hexane–ethanol–trifluoroacetic acid (70:30:0.2, v/v/v) at a flow rate of 1.0 mL/min. The method was extensively validated for the quantification of RE in WCK 3023 and proved to be robust. For RE the detector response was linear over the concentration range of 0.11–5 μg/mL. The limit of quantitation and limit of detection for RE were 0.11 and 0.04 μg/mL respectively. Average recovery of the RE was in the range of 98.11–99.55%. The developed method was specific, sensitive, precise and accurate for quantitative determination of RE in WCK 3023. The impact of thermodynamic parameters on the chiral separation was evaluated. The method was employed for controlling the enantiomeric impurity in the lots of WCK 3023 used for pre‐clinical studies. The method was successfully applied to evaluate the possible conversion of WCK 3023 to RE in rat serum samples during pre‐clinical pharmacokinetic studies.  相似文献   

15.
A sensitive and reliable bioanalytical method was established for quantitati\ve and pharmacokinetic investigation of nine ginsenosides and seven bufadienolides in rat plasma after the oral administration of Shexiang Baoxin Pill by liquid chromatography–electrospray ionization tandem mass spectrometry, using tinidazole and digoxin as internal standards (ISTDs). All of the analytes and ISTDs obtained satisfactory recoveries by solid‐phase extraction using an Oasis HLB μElution Plate, which was eluted with methanol and ethyl acetate successively, and chromatographic separation was achieved on a Shim‐pack XR‐ODSIIcolumn (75 × 2.0 mm, 2.2 μm) with gradient elution using a mixture of acetonitrile–0.1% formic acid solution (v /v) as the mobile phase at a flow rate of 0.3 mL/min. Detection was carried out by a triple‐quadrupole tandem mass spectrometry with positive/negative ion switching multiple reaction monitoring mode. All analytes showed good linearity over a wide concentration range (r 2 > 0.99). The lower limit of quantification was in the range 0.625–12.5 ng/mL for bufadienolides and 2–5.5 ng/mL for ginsenosides, and the mean recoveries of all analytes were in the range 78.29–99.35%. The intra‐ and inter‐day precisions (RSD) were in the range 0.08–12.38% with the accuracies between 86.09 and 99.40%. The validated method was then successfully applied to pharmacokinetic study of the above 16 compounds in rat plasma. Pharmacokinetic results indicated that the developed extraction and analytical method could be employed as a rapid, effective technique for pharmacokinetic study of multiple components, especially various polarity that are difficult to extract simultaneously.  相似文献   

16.
A new liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of trifolirhizin, (–)‐maackiain, (–)‐sophoranone, and 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran from Sophora tonkinensis in rat plasma using chlorpropamide as an internal standard. Plasma samples (50 μL) were prepared using a simple deproteinization procedure with 150 μL of acetonitrile containing 100 ng/mL of chlorpropamide. Chromatographic separation was carried out on an Acclaim RSLC120 C18 column (2.1 × 100 mm, 2.2 μm) using a gradient elution consisting of 7.5 mM ammonium acetate and acetonitrile containing 0.1% formic acid (0.4 mL/min flow rate, 7.0 min total run time). The detection and quantitation of all analytes were performed in selected reaction monitoring mode under both positive and negative electrospray ionization. This assay was linear over concentration ranges of 50–5000 ng/mL (trifolirhizin), 25–2500 ng/mL ((–)‐maackiain), 5–250 ng/mL ((–)‐sophoranone), and 1–250 ng/mL 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran) with a lower limit of quantification of 50, 25, 5, and 1 ng/mL for trifolirhizin, (–)‐maackiain, (–)‐sophoranone, and 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran, respectively. All the validation data, including the specificity, precision, accuracy, recovery, and stability conformed to the acceptance requirements. The results indicated that the developed method is sufficiently reliable for the pharmacokinetic study of the analytes following oral administration of Sophora tonkinensis extract in rats.  相似文献   

17.
Reversed‐phase and size‐exclusion liquid chromatography methods were validated for the assessment of streptokinase. The reversed‐phase method was carried out on a Jupiter C4 column (250 mm × 4.6 mm id) maintained at 25°C. The mobile phase consisted of 50 mM sodium sulfate solution pH 7.0 and methanol (90:10, v/v), run isocratically at a flow rate of 0.8 mL/min. The size‐exclusion method was carried out on a Protein KW 802.5 column (300 mm × 8.0 mm id), at 25°C. The mobile phase consisted of 40 mM sodium acetate solution pH 7.0, run isocratically at a flow rate of 1.0 mL/min. Retention times were 19.3 min, and 14.1 min, and calibration curves were linear over the concentration range of 0.25–250 μg/mL (25.75–25 750 IU/mL) (r 2 = 0.9997) and 5–80 μg/mL (515–8240 IU/mL) (r 2 = 0.9996), respectively, for reversed‐phase and size exclusion, with detection at 220 and 204 nm. Chromatographic methods were employed in conjunction with the in vitro bioassay for the content/potency assessment of Streptokinase, contributing to improve the quality control and ensure the efficacy of the biotherapeutic.  相似文献   

18.
In this study, the CZE method for rapid quantitative and qualitative determination of ibotenic acid and muscimol in Amanita mushrooms naturally grown in Poland was developed. The investigations included the species of A. muscaria, A. pantherina, and A. citrina, collected in southern region of Poland. The studied hallucinogenic compounds were effectively extracted with a mixture of methanol and 1 mM sodium phosphate buffer at pH 3 (1:1 v/v) using ultrasound‐assisted procedure. The obtained extracts were separated and determined by CZE utilizing a 25 mM sodium phosphate running buffer adjusted to pH 3 with 5% content of acetonitrile v/v. The calibration curves for both analytes were linear in the range of 2.5–7000 μg/mL. The intraday and interday variations of quantitative data were 1.0 and 2.5% RSD, respectively. The recovery values of analyzed compounds were over 87%. The identities of ibotenic acid and muscimol were confirmed by UV spectra, migration time, and measurements after addition of external standard.  相似文献   

19.
A fast and accurate liquid chromatography/tandem mass spectrometric (LC‐MS/MS) assay was first developed and validated for the determination of deferiprone in human plasma. The analytes were extracted with acetonitrile from only 50 μL aliquots of human plasma to achieve the protein precipitation. After extraction, chromatographic separation of analytes in human plasma was performed using a Synergi Fusion‐RP 80A column at 30 °C. The mobile phase consisted of methanol and 0.2% formic acid containing 0.2 mM EDTA (60:40, v/v). The flow rate of the mobile phase was 0.8 mL/min. The total run time for each sample analysis was 4 min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the precursor‐to‐parent ion transitions m/z 140.1 → 53.1 for deferiprone and m/z 143.1 → 98.1 for internal standard. A linear range was established from 0.1 to 20 µg/mL. The limit of detection was determined as 0.05 µg/mL. The validated method was estimated for linearity, recovery, stability, precision and accuracy. Intraday and interday precisions were 4.3–5.5 and 4.6–7.3%, respectively. The recovery of deferiprone was in the range of 80.1–86.8%. The method was successfully applied to a pharmacokinetic study of deferiprone in six thalassemia patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
《Electrophoresis》2017,38(24):3168-3176
The purpose of this study was to develop a comprehensive, rapid and practical capillary electrophoresis (CE) method for quality control (QC) of Guan‐Xin‐Ning (GXN) injection based on fingerprint analysis and simultaneous separation and determination of seven constituents. In fingerprint analysis, a capillary zone electrophoresis (CZE) method with a running buffer of 30 mM borate solution (pH 9.3) was established. Meanwhile, ten batches of samples were used to establish the fingerprint electropherogram and 34 common peaks were obtained within 20 min. The RSD of relative migration times (RMT) and relative peak areas (RPA) were less than 5%. In order to further evaluate the quality of GXN injection, a micellar electrokinetic chromatography (MEKC) method was developed for simultaneous separation and determination of bioactive constituents. Seven components reached baseline separation with a running buffer containing 35 mM SDS and 45 mM borate solution (pH 9.3). A good linearity was obtained with correlation coefficients from 0.9906 to 0.9997. The LOD and LOQ ranged from 0.12 to 1.50 μg/mL and from 0.40 to 4.90 μg/mL, respectively. The recoveries ranged between 99.0 and 104.4%. Therefore, it was concluded that the proposed method can be used for full‐scale quality analysis of GXN injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号