首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A simple and cost-effective laboratory-made liquid junction interface was used for coupling of CE with MS. In this device the capillary column and the spray tip were positioned in the electrode vessel containing appropriate spray liquid. The electrospray potential was applied on the electrode inside the liquid junction. A stable electrospray was produced at nanoliter per minute flow rates generated in the emitter tip without using an external pump. This arrangement provided high durability of the spray tip and independent optimization of the CE separation (use of coated capillaries) and ESI conditions. CE-MS analysis of mixtures of drugs, peptides, tryptic digests of proteins and biological fluids was optimized with respect to the effects of the distance between the separation capillary and electrospray tip and pressure applied on the liquid junction. The sensitivity of the system, in terms of the LOD (base peak monitoring) was below 10 ng/mL for the beta-blocker drugs and below 200 ng/mL for peptide analysis.  相似文献   

2.
The hyphenation of capillary electrophoresis (CE) with mass spectrometry (MS) is a powerful method to obtain high efficient, sensitive, and selective analyses. The successful coupling with electrospray ionization (ESI) source requires closed electric circuits for both the CE separation and the ESI processes. A wide range of interfaces has been proposed to satisfy this requirement. Among them, the new high sensitivity porous sprayer based on a porous tip achieves the electric connection by inserting the capillary outlet made of a porous material into an ESI needle filled with a conductive liquid and independently grounded. This device is compatible with the minute flow rates exhibited in CE and therefore makes possible the use of a nano-electrospray behavior. In this work, this interface was evaluated for hyphenating a CE with a single quadrupole MS instrument for low molecular weight analytes. Investigations aimed at highlighting the most influent parameters thanks to a design of experiments, reaching the best performance in terms of sensitivity and stability. MS signal intensities of various pharmaceutical compounds (e.g. amphetamines, β-blockers) emphasized high sensitivity and efficiency, while repeatability, expressed as relative standard deviation of corrected heights and areas, was suitable for quantitative purposes (<5%).  相似文献   

3.
When optimizing a capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS) system, consideration has to be given not only to the separation but also to the electrospray stability. Methods developed for CE/UV analysis of drugs and peptides were considered and modified to be suitable for a CE/MS system with a robust sheathless interface. Different concentrations of the organic modifiers acetonitrile, methanol and 2-propanol were used in the separation buffer. The type and concentrations of these modifiers were also compared with reference to electrospray stability, sensitivity and time of analysis. In addition, different ionic strengths in the buffers were evaluated with reference to electrospray stability. The repeatability was used for the estimation of electrospray stability. The degree to which these parameters influenced the separation and the ESI stability was studied using a nine-peptide standard mixture and the antibiotic drugs bacampicillin and ampicillin as test substances. The analysis time and resolution were used as measures of the efficiency of the separation. A time-of-flight MS analyzer was used since it has the potential advantages of becoming a better fit for integration of CE with MS owing to the speed and sensitivity of this mass analyzer. The detection limit, i.e. 1 microM, for bacampicillin was comparable to what could be achieved with CE/MS on a quadrupole instrument using selected ion monitoring and sheath flow ESI.  相似文献   

4.
A method for adapting widely used CE conditions for the separation of fluorescently labeled carbohydrates to permit online ESI‐MS detection is presented. Reverse polarity separations were performed in bare fused‐silica capillaries with an acidic BGE. Under these conditions, negatively charged 8‐aminopyrene 1,3,6‐trisulfonate‐labeled carbohydrates migrate forward against the EOF, which is towards the capillary inlet. Therefore, the CE‐MS interface must simultaneously back‐fill the capillary, in order to maintain the CE circuit, and provide a stable forward flow at the sprayer tip to support the electrospray process. This was achieved using a junction‐at‐the‐tip interface, which provides a flow of solution to the junction formed by the capillary terminus and the inner wall of the emitter needle tip. Because the flow rate required for this arrangement is much less than in conventional sheath flow interfaces, dilution of the analytes is minimized. Optimized separation conditions permit baseline resolution of glucose oligomers containing up to 15 glucose units, while longer oligomers, up to 33 glucose units, were observed as resolved peaks in the negative ion mode mass spectrum.  相似文献   

5.
Capillary electrophoresis (CE) coupled with electrospray ionization (ESI) mass spectrometry (MS) is a suitable technique for the analysis of intact proteins. The main configuration to realize this coupling is the sheath liquid interface, which is characterized by the addition of a make-up liquid providing the electric contact as well as the appropriate flow and solvent composition for optimal ionization and evaporation. One main advantage of this interface is that the composition of the sheath liquid can be tuned to modify the ionization without affecting CE selectivity and efficiency. In the case of protein ionization, this feature is particularly interesting to modulate their charge-state distribution (CSD), while keeping the separation performance unchanged.  相似文献   

6.
We have developed a novel sheath-flow interface for low-flow electrospray ionization mass spectrometry (ESI-MS) and capillary electrophoresis/electrospray mass spectrometry (CE/ESI-MS). The interface is composed of two capillaries. One is a tapered fused-silica ESI emitter suitable for microliter and nanoliter flow rate electrospray and the other is a tail-end gold-coated CE separation column that is inserted into the emitter. A sheath liquid is supplied between the column and the emitter capillaries. The gold coating and the sheath liquid are used as the conducting media for ESI and the CE circuit. This novel design was initially evaluated by an infusion ESI-MS analysis of the most common antiretroviral dideoxynucleosides, followed by CE/MS coupling analysis of several antidepressant drugs. With infusion studies, the effects of the sheath liquid and the sample flow rates on detection sensitivity and signal stability were investigated. For an emitter with an internal diameter of 30 microm, the optimum flow rates for the sheath and the sample were 200 and 300 nL/min, respectively. The main improvement of this approach in comparison with conventional sheath liquid approaches using an ionspray interface is the gain in sensitivity. Sensitivities were three times better for dideoxynucleosides analyzed by infusion and 12 times higher for antidepressant drugs analyzed by CE/MS with this interface compared with ionspray. The emitter is durable, disposable, and simple to fabricate.  相似文献   

7.
The use of SPE coupled in‐line to CE using electrospray MS detection (in‐line SPE‐CE‐ESI‐MS) was investigated for the preconcentration and separation of four UV filters: benzophenone‐3, 2,2‐dihydroxy‐4‐methoxybenzophenone, 2,4‐dihydroxybenzophenone and 2‐phenylbenzimidazole‐5‐sulphonic acid. First, a CE‐ESI‐MS method was developed and validated using standard samples, obtaining LODs between 0.06 μg/mL and 0.40 μg/mL. For the in‐line SPE‐CE‐ESI‐MS method, three different sorbents were evaluated and compared: Oasis HLB, Oasis MCX, and Oasis MAX. For each sorbent, the main parameters affecting the preconcentration performance, such as sample pH, volume, and composition of the elution plug, and sample injection time were studied. The Oasis MCX sorbent showed the best performance and was used to validate the in‐line SPE‐CE‐ESI‐MS methodology. The LODs reached for standard samples were in the range between 0.01 and 0.05 ng/mL with good reproducibility and the developed strategy provided sensitivity enhancement factors between 3400‐fold and 34 000‐fold. The applicability of the developed methodology was demonstrated by the analysis of UV filters in river water samples.  相似文献   

8.
The hyphenation of capillary electrophoresis and mass spectrometry (CE/MS) remains a minor technique compared with liquid chromatography/mass spectrometry (LC/MS), which represents nowadays the standard instrumentation, regardless of its introduction thirty years ago. However, from a theoretical point of view, CE coupling should be quite favorable especially with electrospray ionization mass spectrometry (ESI‐MS). At the time, the sensitivity provided by CE/MS was often limited, due to hyphenation requirements, which at some point appeared to disqualify CE/MS from benefiting from the performance gain driving the evolution of MS instruments. However, this context has been significantly modified in a matter of a few years. The development of innovative CE/MS interfacing systems has enabled an important improvement regarding sensitivity and reinforced robustness in order to provide an instrumentation accessible to the largest scientific community. Because of the unique selectivity delivered by the electrophoretic separation, CE/MS has proved to be particularly relevant for the analysis of biological molecules. The conjunction of these aspects is motivating the interest in CE/MS analysis and shows that CE/MS is mature enough to enrich the toolbox of analytical techniques for the analysis of complex biological samples. Here we discuss the characteristics of the major types of high‐sensitivity CE/ESI‐MS instrumentation and emphasize the late evolution and future positioning of CE/MS analysis for the characterization of biological molecules like peptides and proteins, through some pertinent applications.  相似文献   

9.
The capillary electrophoretic-mass spectrometric analysis (CE-MS) of catecholamines was optimized with coaxial sheath flow interface and electrospray ionization (ESI). The parameters studied included the sheath liquid composition and its flow rate, separation conditions in ammonium acetate buffer together with the ESI and cone voltages as mass spectrometric parameters. In addition, the effect of ESI voltage on injection as well as the siphoning effect were considered. The optimized conditions were a sheath liquid composition of methanol-water (80:20 v/v) with 0.5% acetic acid, with a flow rate of 6 microL/min. The capillary electrophoretic separation parameters were optimized with 50 mM ammonium acetate buffer, pH 4.0, to +25 kV separation voltage together with a pressure of 0.1 psi. The most intensive signals were obtained with an ESI voltage of +4.0 kV and a cone voltage of +20 V. The nonactive ESI voltage during injection as well as avoidance of the siphoning effect increased the sensitivity of the MS detection considerably. The use of ammonium hydroxide as the CE capillary conditioning solution instead of sodium hydroxide did not affect the CE-MS performance, but allowed the conditioning of the capillary between analyses to be performed in the MS without contaminating the ion source.  相似文献   

10.
In this work, ion mobility spectrometry (IMS) function as a detector and another dimension of separation was coupled with CE to achieve two‐dimensional separation. To improve the performance of hyphenated CE‐IMS instrument, electrospray ionization correlation ion mobility spectrometry is evaluated and compared with traditional signal averaging data acquisition method using tetraalkylammonium bromide compounds. The effect of various parameters on the separation including sample introduction, sheath fluid of CE and drift gas, data acquisition method of IMS were investigated. The experimental result shows that the optimal conditions are as follows: hydrodynamic sample injection method, the electrophoresis voltage is 10 kilo volts, 5 mmol/L ammonium acetate buffer solution containing 80% acetonitrile as both the background electrolyte and the electrospray ionization sheath fluid, the ESI liquid flow rate is 4.5 μL/min, the drift voltage is 10.5 kilo volts, the drift gas temperature is 383 K and the drift gas flow rate is 300 mL/min. Under the above conditions, the mixture standards of seven tetraalkylammoniums can be completely separated within 10 min both by CE and IMS. The linear range was 5–250 μg/mL, with LOD of 0.152, 0.204, 0.277, 0.382, 0.466, 0.623 and 0.892 μg/mL, respectively. Compared with traditional capillary electrophoresis detection methods, the developed CE‐ESI‐IMS method not only provide two sets of qualitative parameters including electrophoresis migration time and ion drift time, ion mobility spectrometer can also provide an additional dimension of separation and could apply to the detection ultra‐violet transparent compounds or none fluorescent compounds.  相似文献   

11.
We have fabricated a coaxial sheath liquid flow microelectrospray ionization (microESI) interface for capillary electrophoresis coupled with mass spectrometry (CE/MS). The ESI interface, which features a reduced probe diameter (130 microm i.d. x 174 microm o.d.) with a nebulizer-free format, can relatively easily electrospray a large amount of make-up sheath liquid (5-10 microL/min) over the long term (more than 80 runs) with a high degree of stability. The interface also provides higher separation qualities and improved detection sensitivities compared with a conventional ion spray (IS) interface.  相似文献   

12.
Sample injection is a critical step in a capillary electrophoresis (CE) analysis. Electrokinetic injection is the simplest approach and is often selected for implementation in portable CE instruments. However, in order to minimize the effect of sample matrix upon the results of a CE analysis, hydrodynamic injection is preferred. Although portable CE instruments with hydrodynamic injection have been reported, injection has always been performed at the grounded end of the capillary. This simplifies fluidic handling but limits coupling with electrochemical detectors and electrospray ionization–mass spectrometry (ESI–MS). We demonstrated previously that injection at the high-voltage (HV) end of the capillary could be performed using an HV-compatible rotary injection valve (fixed-volume injection). However, the mismatch between the bore sizes of the channels on the rotor–stator valve and the separation capillary caused peak tailing and undesired mixing, impairing analytical performance. In this work, we present an HV-compatible hydrodynamic injection approach that overcomes the issues associated with the fixed-volume injection approach reported previously. The performance of the CE instrument was demonstrated by analyzing a mixture of 13 amino acids by CE coupled to laser-induced fluorescence, which showed relative standard deviations for peak area and migration time below 5% and 1%, respectively, for triplicate analysis. Additionally, replicate measurements of a mixture of amino acids, peptides, nucleobases, and nucleosides by CE coupled to electrospray ionization–mass spectrometry (CE–ESI–MS) were performed to evaluate peak tailing, and results were similar to those obtained with a commercial CE–ESI–MS setup.  相似文献   

13.
Concentration sensitivity is a key performance indicator for analytical techniques including for capillary electrophoresis-mass spectrometry (CE–MS) with electrospray ionization (ESI). In this study, a flow-through microvial interface was used to couple CE with MS and improve the ESI stability and detection sensitivity. By infusing a peptide mixture through the interface into an MS detector at a typical flow rate for CE-MS analysis, the spatial region near the interface was mapped for MS signal intensity. When the sprayer tip was within a 6 × 6.5 × 5 mm region in front of the MS inlet, the ESI was stable with no significant loss of signal intensity for ions with m/z 239. Finite element simulations showed that the average electric field strength at the emitter tip did not change significantly with minor changes in emitter tip location. Experiments were conducted with four different mass spectrometer platforms coupled to CE via the flow-through microvial interface. Key performance indicators, that is, limit of detection (LOD) and linearity of calibration curves were measured for nine amino acids and five peptides. Inter- and intraday reproducibility were also tested. The results were shown to be suitable for quantification when internal standards were used.  相似文献   

14.
《Electrophoresis》2018,39(11):1382-1389
A sheath‐flow interface is the most common ionization technique in CE‐ESI‐MS. However, this interface dilutes the analytes with the sheath liquid and decreases the sensitivity. In this study, we developed a sheathless CE‐MS interface to improve sensitivity. The interface was fabricated by making a small crack approximately 2 cm from the end of a capillary column fixed on a plastic plate, and then covering the crack with a dialysis membrane to prevent metabolite loss during separation. A voltage for CE separation was applied between the capillary inlet and the buffer reservoir. Under optimum conditions, 52 cationic metabolite standards were separated and selectively detected using MS. With a pressure injection of 5 kPa for 15 s (ca. 1.4 nL), the detection limits for the tested compounds were between 0.06 and 1.7 μmol/L (S/N = 3). The method was applied to analysis of cationic metabolites extracted from a small number (12 000) of cancer cells, and the number of peaks detected was about 2.5 times higher than when using conventional sheath‐flow CE‐MS. Because the interface is easy to construct, it is cost‐effective and can be adapted to any commercially available capillaries. This method is a powerful new tool for highly sensitive CE‐MS‐based metabolomic analysis.  相似文献   

15.
The construction of a sheathless interface for capillary electrophoresis-electrospray ionization mass spectrometry (CE-ESI-MS), for operation with a Z-Spray source on a Micromass Quattro-LC triple quadrupole mass spectrometer is described. Designing the interface involved machining a probe compatible with the setup already in place on the mass spectrometer, i.e., MegaFlow-Z ESI. The probe was made of Lexan with the same dimensions as the ESI probe supplied with the instrument. The electrical connection at the electrospray end of the CE capillary was made possible by gold-coating (sheathless CE-ESI-MS). The probe design as well as the electrical and power supply requirements are described in detail. Experiments were performed using this interface, and CE separations of mixtures containing pmole and sub-pmole amounts of peptides were monitored by on-line MS. For a standard peptide mixture (10(-4) M), separation efficiency was typically characterized by N > 10(4) theoretical plates with S/N > 400. Using the same experimental setup, it was also possible to conduct on-line CE-ESI-tandem MS (MS/MS) experiments on the same peptide mixture, and to determine the sequence of the peptides. MS/MS scan functions for different precursor ions were used either alternately or sequentially and the results from both methods were compared. The possibility of peptide mass mapping was explored, and CE-ESI-MS results were obtained for the digestion products of equine myoglobin. Separation efficiencies and S/N values were similar to those obtained for standard peptides. A complete map of the digestion products was obtained.  相似文献   

16.
The applicability of a capillary zone electrophoresis–electrospray ionisation tandem mass spectrometric (CZE–ESI-MS–MS) method for the separation of nine fluoroquinolones was investigated. Method optimisation involved systematic trouble-shooting starting with the type and duration of capillary pre-washing and conditioning, the choice of both the CE run buffer, MS sheath liquid, CE run potential, ESI spray voltage, sheath gas flow-rate, MS capillary voltage and CE capillary and MS capillary temperatures. Another extremely important factor was found to be the degree to which the CE capillary protrudes into the ESI chamber as well as whether or not sheath gas and spray voltage are employed during the CE injection or not. The importance of the latter has, to our knowledge, not been addressed elsewhere. Nine fluoroquinolones have been separated and detected in a single run by this technique.  相似文献   

17.
The fabrication of a novel sheathless interface for capillary electrophoresis–electrospray–mass spectrometry (CE–ESI–MS) is described. A programmable CO2 laser was used to ablate small channels in the walls of a polyimide capillary near the terminus. Subsequent exposure of the channel region to a cellulose acetate solution followed by drying resulted in the formation of an electrically conductive semi-permeable membrane. Application of an appropriate voltage to the reservoir resulted in the simultaneous establishment of an electrical connection for CE and ESI. Interface viability was demonstrated by conducting a CE separation of a peptide mixture, with detection accomplished via positive ion mode ESI–MS. For the peptide Val-Tyr-Val, a limit of detection of 0.1 femtomole (S/N 3) was achieved using single reaction monitoring. Attributes of the interface include structural robustness, ease of fabrication, minimal interface dead volume, and the ability to alter post-separation analyte ionization status by use of appropriate buffers in the interface reservoir.  相似文献   

18.
A novel microfabricated device for isoelectric focusing (IEF) incorporating an optimized electrospray ionization (ESI) tip was constructed on polycarbonate plates using laser micromachining. The IEF microchip incorporated a separation channel (50 micro x 30 micro x 16 cm), three fluid connectors, and two buffer reservoirs. Electrical potentials used for IEF focusing and electrospray were applied through platinum electrodes placed in the buffer reservoirs, which were isolated from the separation channel by porous membranes. Direct ESI-mass spectrometry (MS) using electrosprays produced directly from a sharp emitter "tip" on the microchip was evaluated. The results indicated that this design can produce a stable electrospray and that performance was further improved and made more flexible with the assistance of a sheath gas and sheath liquid. Error analysis of the spectral data showed that the standard deviation in signal intensity for an analyte peak was less than approximately 5% over 3 h. The production of stable electrosprays directly from microchip IEF device represents a step towards easily fabricated microanalytical devices. Microchannel IEF separations of protein mixtures were demonstrated for uncoated polycarbonate microchips. Direct microchannel IEF-ESI-MS was demonstrated using the microfabricated chip with an ion-trap mass spectrometer for characterization of protein mixtures.  相似文献   

19.
Signal suppression is a common issue when analyzing compounds by liquid chromatography coupled to mass spectrometry (LC/MS/MS). Suppression of signals is caused by co‐eluting matrix compounds and is thought to take place in the interface. This paper reports strong signal suppression effects which were observed when using a single‐stage Orbitrap instrument which was coupled by an electrospray interface to a liquid chromatograph. This type of signal suppression (often the complete loss of certain analyte signal) is observed in addition to signal suppression originating in the electrospray interface. The location of where this phenomenon occurs was shown to be clearly beyond the interface region. It was suspected that not the Orbitrap cell itself, but the C‐trap, which is an integral part within the Orbitrap instrument, was the probable location. Such post‐interface signal suppression was observed – and could be experimentally induced – when multiply charged ions (e.g. electrospray protonated proteins) were co‐eluting with the analytes. High concentrations of proteins, yet not exceeding the maximum ion capacity of the trap, can cause a complete loss of all low m/z masses. This paper describes the practical implication when analyzing heavy matrix samples and discusses strategies to reduce such detrimental effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, an open‐tubular capillary electrochromatography (OT‐CEC) column with a monolithic layer of molecularly imprinted polymer (MIP) based on methacrylic acid, ethylene glycol dimethacrylate, and 4‐styrenesulfonic acid was utilized for the simultaneous separation and characterization of phospholipid (PL) molecular structures by interfacing with electrospray ionization‐tandem mass spectrometry (ESI‐MS‐MS). Introducing an MIP‐based monolith along with charged species at the OT column made it possible to separate PL molecules based on differences in head groups and acyl chain lengths in CEC. For the interface of OT‐CEC with ESI‐MS‐MS, a simple nanospray interface utilizing a sheath flow was developed and the resulting OT‐CEC‐ESI‐MS‐MS was able to separate PL standards (phosphatidylserines, phosphatidylethanolamines, phosphatidylglycerols, phosphatidic acid, and lysophosphatidylglycerols). The developed method was applied to human urinary lipid extracts, and resulted in the separation and structural identification of 18 molecules by data‐dependent collision‐induced dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号