首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以水合肼为还原剂,采用均相还原法制备还原氧化石墨烯-多壁碳纳米管复合材料(rGO-MWCNTs),通过滴涂法将其修饰到玻碳电极(GCE)表面.以此复合材料为载体,采用电化学方法制备了金纳米粒子-还原氧化石墨烯-多壁碳纳米管复合膜修饰电极(AuNPs-rGO-MWCNTs/GCE).通过扫描电镜(SEM)、EDS能谱技术和电化学方法对此电极进行了表征.研究了双酚A在修饰电极上的电化学行为.结果表明,此电极对双酚A的电极过程具有良好的电化学活性,在0.10 mol/L PBS溶液(pH 7.0)中,微分脉冲伏安法测定双酚A的线性范围为5.0 × 10-9~1.0 × 10-7 mol/L和1.0 × 10-7~2.0 × 10-5 mol/L,检出限为1.0 ×10-9 mol/L(S/N=3). 将此电极用于模拟水样和超市购物小票样品中双酚A含量的测定,加标回收率分别为97%~110%和98%~104%.  相似文献   

2.
《Electroanalysis》2018,30(2):288-295
Methotrexate (MTX) was used as an anti‐cancer drug, but its excessive use can cause serious side effects, it was necessary to monitor MTX in vivo. In this report, DNA was immobilized on a glassy carbon electrode (GCE) modified with graphene oxide (GO) to develop an electrochemical sensor for sensitive determination of MTX for the first time. The adsorptive voltammetric behaviors of MTX on DNA sensor were investigated using differential pulse voltammetry (DPV). The peak current response of guanine in DNA was used as a determination signal of MTX in acetate buffer solution pH 4.6. Voltammetric investigations revealed that the proposed method could determine MTX in the concentration range from 5.5×10−8 to 2.2×10−6 mol L−1 with a lower detection limit of 7.6×109 mol L−1 (S/N=3). The method was applied to detect MTX in human blood serum and diluted urine samples with excellent recoveries of 97.4–102.5 %. Compared with the previous studies, the DNA/GO/GCE electrode constructed by us based on the change rate of guanine current (R%) in DNA, proportionally reflecting the MTX concentration, is simple and sensitive .  相似文献   

3.
This work presents a sensitive voltammetric method for determination of the flavonoid baicalein by using a thermally reduced graphene oxide (TRGO) modified glassy carbon electrode (GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The surface morphology and structure of TRGO investigated by atomic force microscopy, FT‐IR spectroscopy and Raman spectroscopy reveal that the TRGO prepared maintained as single or bilayer sheets and with significant edge‐plane‐like defect sites. The TRGO/GCE modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with bare GCE and GO/GCE electrodes. The electrochemical behaviors of baicalein at the TRGO/GCE were investigated by cyclic voltammetry, suggesting that the TRGO/GCE exhibits excellent electrocatalytic activity to baicalein. Under physiological conditions, the modified electrode showed linear voltammetric response from 10 nM to 10 µM for baicalein, with a detection limit of 6.0 nM. This work demonstrates that the graphene‐modified electrode is a promising tool for electrochemical determination of flavonoid drugs.  相似文献   

4.
Three-dimensional copper hydroxide nanosupercages and electrochemically reduced graphene oxide were used to modify the glassy carbon electrode for the selective determination of hydrogen peroxide. The morphology and electrochemistry properties of copper hydroxide nanosupercage/electrochemically reduced graphene oxide/glassy carbon electrode were characterized using transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, Raman spectra, cyclic voltammetry, and electrochemical impedance spectroscopy. The resulting copper hydroxide nanosupercage/electrochemically reduced graphene oxide/glassy carbon electrode showed favorable performance for the electrocatalytic reduction of hydrogen peroxide. The amperometric current–time curve of the electrochemical sensor exhibited a wide linear range from 0.5 to 1030?µM with a limit of detection of 0.23?µM at a signal-to-noise ratio of three. Moreover, the sensor provided favorable selectivity, reproducibility, and stability and was used for the determination of H2O2 in tap water.  相似文献   

5.
The study presents a novel paracetamol (PA) sensor based on Pd nanoparticles (PdNPs) deposited on carboxylated graphene oxide (GO?COOH) and nafion (Nf) modified glassy carbon electrode (GCE). The morphologies of the as prepared composites were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and fourier transform infrared spectroscopy (FTIR). The experimental results demonstrated that Nf/GO?COOPd displayed excellent electrocatalytic response to the oxidation PA. The linear range was 0.04–800 μM for PA with limit of detection of 0.012 μM and excellent sensitivity of 232.89 μA mM?1 cm?2. By considering the excellent performance of Nf/GO?COOPd composite such as wider linear range, lower detection, better selectivity, repeatability, reproducibility, and storage stability, the prepared composite, especially GO?COOH support, with satisfactory electrocatalytic properties was a promising material for the modification of electrode material in electrochemical sensor and biosensor field.  相似文献   

6.
石墨烯修饰玻碳电极测定邻苯二酚   总被引:2,自引:0,他引:2  
罗启枚  王辉宪  刘登友  王玲 《应用化学》2012,29(9):1070-1074
制备了用于测定邻苯二酚(CAT)的石墨烯修饰电极,并应用循环伏安法研究了CAT在该修饰电极上的电化学行为;用差分脉冲伏安法研究了测试底液的pH值对该修饰电极性能的影响,结果表明,此修饰电极在含不同浓度CAT的PBS溶液(pH=7.0)中测定,响应电流与CAT浓度在5.0×10-8~5.6×10-4mol/L范围内有良好的线性关系,相关系数r=0.9919,检出限为6.68×10-9mol/L(S/N=3)。与其它几种修饰电极相比,石墨烯修饰电极制备简单、响应时间快、操作简便,稳定性和重现性良好,有应用价值。  相似文献   

7.
A sensitive electrochemical method was developed for the determination of bisphenol A (BPA) at a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (MWCNTs)‐gold nanoparticles (GNPs) hybrid film, which was prepared based on the electrostatic interaction between positively charged cetyltrimethylammonium bromide (CTAB) and negatively charged MWCNTs and GNPs. The MWCNT‐GNPs/GCE exhibited an enhanced electroactivity for BPA oxidation versus unmodified GCE and MWCNTs/GCE. The experimental parameters, including the amounts of modified MWCNTs and GNPs, the pH of the supporting electrolyte, scan rate and accumulation time, were examined and optimized. Under the optimal conditions, the differential pulse voltammetric anodic peak current of BPA was linear with the BPA concentration from 2.0×10?8 to 2×10?5 mol L?1, with a limit of detection of 7.5 nmol L?1. The proposed procedure was applied to determine BPA leached from real plastic samples with satisfactory results.  相似文献   

8.
Alloxan is a toxic reagent that strongly induces the diabetes by destroying insulin‐producing β‐cells in the pancreas of living organisms. The reduction product of alloxan is dialuric acid, which is responsible for the intracellular generation of ROS to enhance the stress in living cells to cause kidney disease or diabetic nephropathy. Herein, we studied for the first time the electrochemical properties of alloxan on reduced graphene oxide modified glassy carbon electrode (rGO/GCE) in 0.1 M phosphate buffer solution (PBS) at pH 7. The obtained results were compared with graphene oxide modified GCE (GO/GCE) and bare GCE surfaces. The modified rGO/GCE showed well defined redox couple with 10 fold increase in both reduction as well as oxidation peak current for alloxan than that of GO/GCE and bare GCE. Differential pulse voltammetry (DPV) technique shows the linear increase in both oxidation and reduction peak current of alloxan in the range of 30 μM to 3 mM with LOD of 1.2 μM. An amperometric signal of alloxan is also increases with respect to each addition of 50 μM of alloxan on rGO/GCE at constant potential of ?0.05 V. The linear range of alloxan is observed between 50 μM to 750 μM (S/N=3). This kind of rGO/GCE surface is more suitable platform or sensor matrix for estimating unknown concentration of alloxan molecule in the real biological systems.  相似文献   

9.
《Electroanalysis》2017,29(11):2620-2627
Bisphenol A, an important compound that is classified as an environmental hormone, has been proven to have harmful effects on human health and ecology. A molybdenum disulfide/Au nanorod‐modified glassy carbon electrode was prepared as an electrochemical sensor for the detection of bisphenol A using a simple and convenient approach. UV–Vis spectrophotometry and transmission electron microscopy were employed to characterize the composite. The electrochemical behavior of bisphenol A at the modified electrode was investigated via differential pulse voltammetry and cyclic voltammetry. The results show that bisphenol A exhibits a good electrochemical signal at the modified electrode under optimized conditions, and a good linear relationship was observed between the bisphenol A concentration and peak current within the range of 0.01–50 μM, with a detection limit of 3.4 nM. Furthermore, the fabricated electrodes showed good anti‐interference, reproducibility and stability. The proposed electrochemical method was successfully applied for the detection of bisphenol A in milk and water samples, and its potential for applications in pollutant detection was demonstrated.  相似文献   

10.
The graphene nanosheets/manganese oxide nanoparticles modified glassy carbon electrode (GC/GNSs/MnOx) was simply prepared by casting a thin film of GNSs on the GC electrode surface, followed by performing electrodeposition of MnOx at applied constant potential. The GC/GNSs/MnOx modified electrode shows high catalytic activity toward oxidation of L ‐cysteine. Hydrodynamic amperometry determination of L ‐cysteine gave linear responses over a concentration range up to 120 µM with a detection limit of 75 nM and sensitivity of 27 nA µM?1. The GC/GNSs/MnOx electrode appears to be a highly efficient platform for the development of sensitive, stable and reproducible L ‐cysteine electrochemical sensors.  相似文献   

11.
This research found a cheap and efficient catalyst for electrooxidation of formaldehyde (HCHO). A CuO nano‐crystalline modified glassy carbon electrode (GCE) was fabricated and had an excellent electrocatalytic activity towards the oxidation of HCHO. Both the effect of potential scan rate and the effect of HCHO concentration on the electrocatalytic oxidation performance of the electrode were investigated. The amperometric current response of the electrode was proportional to HCHO concentration in the range of 1.0 µmol·L?1–10.0 mmol·L?1 with a detection limit (s/n=3) of 0.25 µmol·L?1. The electrode was stable, showing the CuO nano‐crystlline is promising for applications in fuel cells and electrochemical sensors.  相似文献   

12.
A sensitive hydrogen peroxide (H2O2) biosensor was developed based on a reduced graphene oxide|carbon ceramic electrode (RGO|CCE) modified with cadmium sulfide‐hemoglobin (CdS‐Hb). The electron transfer kinetics of Hb were promoted due to the synergetic function of RGO and CdS nanoparticles. The transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) were calculated to be 0.54 and 2.6 s?1, respectively, indicating a great facilitation achieved in the electron transfer between Hb and the electrode surface. The biosensor showed a good linear response to the reduction of H2O2 over the concentration range of 2–240 µM with a detection limit of 0.24 µM (S/N=3) and a sensitivity of 1.056 µA µM?1 cm?2. The high surface coverage of the CdS‐Hb modified RGO|CCE (1.04×10?8 mol cm?2) and a smaller value of the apparent Michaelis? Menten constant (0.24 mM) confirmed excellent loading of Hb and high affinity of the biosensor for hydrogen peroxide.  相似文献   

13.
Tungsten oxide (W) decorated titanium oxide (T) adsorbed onto a graphene (Gr) and modified the glassy carbon electrode for the electrochemical quantification of riboflavin (RF) in edible food and pharmaceuticals. For comparison, nanocomposites are formed using graphene oxide (GO), reduced graphene oxide (rGO) and pure graphite (G) sheets to study the electrochemical activities towards riboflavin. The ternary WTGr modified GCE shows the highest electrocatalytic activity due to synergetic interactions between the metal oxide and graphene. The electrochemical observations are supported by the SEM, HRTEM, XRD, UV-Vis, Zeta potential (ζ) and size data. The sensor shows a wide linear range 20 nM–2.5 μM with a detection limit 25.24 nM and sensitivity (4.249×10−8 A/nM). The fabricated sensor is validated in real samples.  相似文献   

14.
A sensitive electrochemical sensor for determining bisphenol A(BPA) was designed. The sensor was a glassy carbon electrode modified with the surfactant cetyltrimethylammonium bromide and the ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate. The ability of the new sensor to measure BPA was investigated in cyclic voltammetry experiments. Under optimized conditions, the sensor gave a linear response range for BPA of 2.19×10-7-3.28×10-5 mol/L and a detection limit of 7.31×10-8 mol/L(S/N=3). BPA could be determined with a lower detection limit, a wider linear range, and more sensitivity using the sensor than using other electrochemical sensors or high performance liquid chromatography with UV detection. The new sensor was used to determine BPA in tap water with recoveries of 97.5%-98.7% and a relative standard deviation <2.9%. The results show that the sensor can be used to determine trace BPA concentrations in tap water.  相似文献   

15.
《Electroanalysis》2017,29(11):2572-2578
We report in this work, a new method for the determination of captopril by differential pulse voltammetry using a glassy carbon electrode modified with a copper metal‐organic framework (H‐Kust‐1 or Cu3(BTC)2 or Cu‐BTC), immobilized on the surface by a copolymer of acrylamide and sodium acrylate. This compound is detected by the formation of a copper(II)‐captopril complex that is observed in an oxidation potential at ca. +0.28 V vs . Ag/AgCl. A linear dynamic range is obtained for a captopril concentration of 0.5 μM to 7.0 μM and the voltammetric response is highly reproducible within 3.52 % error. The sensitivity of 9.71±0.37 nA μM−1 and the limit of detection of 0.20±0.01 μM make this methodology highly applicable for practical applications. The determination of captopril in a commercial pharmaceutical sample showed a recovery of 93.3 %.  相似文献   

16.
先以氧化石墨烯(Graphen oxide,GO)为阴离子掺杂剂,采用电化学聚合法制备了聚吡咯-氧化石墨烯复合膜(PPy-GO)。分别在0.10 mol/L Na Cl和0.10 mol/L NaOH溶液中对其进行还原和过氧化处理,制得过氧化聚吡咯-还原氧化石墨烯复合膜(OPPy-ERGO)。再以此OPPy-ERGO复合膜为载体,采用电化学沉积法制备了氧化铜-过氧化聚吡咯-还原氧化石墨烯复合膜修饰电极(CuO-OPPy-ERGO/CCE)。通过扫描电镜和电化学方法对此电极进行表征,研究了葡萄糖在此修饰电极上的电化学行为。结果表明,此电极对葡萄糖的电氧化过程表现出高的催化活性和良好的抗干扰能力。在0.20 mol/L NaOH溶液中,安培法检测葡萄糖的线性范围为5.0×10~(-7)~1.0×10~(-3)mol/L,检出限(3Sb)为2.0×10~(-7)mol/L,灵敏度为121.8μA/(mmol·L~(-1))。该电极用于血清中葡萄糖含量的测定,加标回收率为96.0%~110.1%。  相似文献   

17.
The present study describes a novel and very sensitive electrochemical assay for determination of hydrogen peroxide (H2O2) based on synergistic effects of reduced graphene oxide‐ magnetic iron oxide nanocomposite (rGO‐Fe3O4) and celestine blue (CB) for electrochemical reduction of H2O2. rGO‐Fe3O4 nanocomposite was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), electrochemical impedance spectroscopy and cyclic voltammetry. Chitosan (Chit) was used for immobilization of amino‐terminated single‐stranded DNA (ss‐DNA) molecules via a glutaraldehyde (GA) to the surface of rGO‐Fe3O4. The MTT (3‐(4,5‐Dim ethylt hiazol‐2‐yl)‐2,5‐diphenylt etrazolium bromide) results confirmed the biocompatibility of nanocomposite. Experimental parameters affecting the ss‐DNA molecules immobilization were optimized. Finally, by accumulation of the CB on the surface of the rGO‐Fe3O4‐Chit/ssDNA, very sensitive amperometric H2O2 sensor was fabricated. The electrocatalytic activity of the rGO‐Fe3O4‐Chit/DNA‐CB electrode toward H2O2 reduction was found to be very efficient, yielding very low detection limit (DL) of 42 nM and a sensitivity of 8.51 μA/μM. Result shows that complex matrices of the human serum samples did not interfere with the fabricated sensor. The developed sensor provided significant advantages in terms of low detection limit, high stability and good reproducibility for detection of H2O2 in comparison with recently reported electrochemical H2O2 sensors.  相似文献   

18.
常凤霞  尚宗毅  董清  龙志彦  邓怡雪 《应用化学》2020,37(10):1195-1202
以商品化纳米氧化铜和羧化碳纳米管作为玻碳电极修饰材料,结合了两种材料的放大电信号和电催化性能,所构建的复合物修饰电极可区分性质相近的同分异构体邻苯二酚和对苯二酚的信号,同时可进一步放大两种酚的峰电流。 因此该基于纳米氧化铜和碳纳米管的电化学传感器可用于邻苯二酚和对苯二酚的同时检测。 采用循环伏安法对复合物中两种材料的比例、修饰量以及支持电解质pH进行了优化:纳米氧化铜和碳纳米管质量比为5∶1,修饰量为9 μL,pH=7.4的磷酸盐缓冲溶液被用作电解质溶液。 在优化的条件下,邻苯二酚和对苯二酚的微分脉冲伏安扫描峰电流与浓度在6.0×10-7~3.0×10-3 mol/L范围内均呈良好的线性关系,检出限(S/N=3)分别为1.0×10-7和1.6×10-7 mol/L。 该方法具有成本低、操作简便、快速的特点,对实际水样的加标回收率在94.6%~101.1%范围内,具有较好的实际应用前景。  相似文献   

19.
Over the past years, the development of electrochemical sensing platforms for the sensitive detection of drug molecules have received great interests. In this research study, we introduced cauliflower‐like platinum particles decorated reduced graphene oxide modified glassy carbon electrode (Pt?RGO/GCE) as an electrochemical sensing platform for highly sensitive determination of acetaminophen (ACTM). The sensor was prepared via a simple and environmentally friendly two‐step electrodeposition method at room temperature. The combination of conductive RGO nanosheets and unique structured Pt particles (average 232 nm in diameter) provided an efficient interface with large effective surface area which greatly facilitated the electron transfer of ACTM. The experimental conditions that might affect the drug detection were studied in detail and optimized for best performance. The Pt?RGO/GCE was able to detect ACTM up to the limit of 2.2 nM with a linear concentration range from 0.01 to 350 μM. With its high reproducibility, excellent stability and selectivity, the as‐fabricated sensor was successfully applied to the ACTM content measurement in commercial tablets.  相似文献   

20.
Laser-reduced graphene oxide (LRGO) on a polyethylene terephthalate (PET) substrate was prepared in one step to obtain the LRGO grid electrode for sensitive carbaryl determination. The grid form results in a grid distribution of different electrochemically active zones affecting the electroactive substance diffusion towards the electrode surface and increasing the electrochemical sensitivity for carbaryl determination. Carbaryl is electrochemically irreversibly oxidized at the secondary amine moiety of the molecule with the loss of one proton and one electron in the pH range from 5 to 7 by linear scan voltammetry (LSV) on the LRGO grid electrode with a scan rate of 300 mV/s. Some interference of the juice matrix molecules does not significantly affect the LSV oxidation current of carbaryl on the LRGO grid electrode after adsorptive accumulation without applied potential. The LRGO grid electrode can be used for LSV determination of carbaryl in fruit juices in the concentration range from 0.25 to 128 mg/L with LOD of 0.1 mg/L. The fabrication of the LRGO grid electrode opens up possibilities for further inexpensive monitoring of carbaryl in other fruit juices and fruits  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号