首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
多肽基金属离子传感器作为一种基于多肽序列而设计的新型传感器,越来越受到研究者的关注.多肽作为一类重要的生物小分子,具有合成方法成熟、简便、成本低,且能够以多齿配位状态与金属离子结合等优点.多肽基传感器对金属离子具有高灵敏性和高选择性,且可以通过调节多肽序列进一步优化.与其他类型传感器相比,多肽基金属离子传感器具有良好的...  相似文献   

2.
We demonstrate operation of the first cryogenic 2D linear ion trap (LIT) with mass‐selective capabilities. This trap presents a number of advantages for infrared ion “action” spectroscopy studies, particularly those employing the “tagging/messenger” spectroscopy approach. The high trapping efficiencies, trapping capacities, and low detection limits make 2D LITs a highly suitable choice for low‐concentration analytes from scarce biological samples. In our trap, ions can be cooled down to cryogenic temperatures to achieve higher‐resolution infrared spectra, and individual ions can be mass selected prior to irradiation for a background‐free photodissociation scheme. Conveniently, multiple tagged analyte ions can be mass isolated and efficiently irradiated in the same experiment, allowing their infrared spectra to be recorded in parallel. This multiplexed approach is critical in terms of increasing the duty cycle of infrared ion spectroscopy, which is currently a key weakness of the technique. The compact design of this instrument, coupled with powerful mass selection capabilities, set the stage for making cryogenic infrared ion spectroscopy viable as a bioanalytical tool in small molecule identification.  相似文献   

3.
Calculated structures of the two most stable conformers of a protonated decapeptide gramicidin S in the gas phase have been validated by comparing the vibrational spectra, calculated from first‐ principles and measured in a wide spectral range using infrared (IR)–UV double resonance cold ion spectroscopy. All the 522 vibrational modes of each conformer were calculated quantum mechanically and compared with the experiment without any recourse to an empirical scaling. The study demonstrates that first‐principles calculations, when accounting for vibrational anharmonicity, can reproduce high‐resolution experimental spectra well enough for validating structures of molecules as large as of 200 atoms. The validated accurate structures of the peptide may serve as templates for in silico drug design and absolute calibration of ion mobility measurements.  相似文献   

4.
THz spectroscopy is important for the study of ion channels because it directly addresses the low frequency collective motions relevant for their function. Here we used THz spectroscopy to investigate the inhibition of the epithelial sodium channel (ENaC) by its specific blocker, amiloride. Experiments were performed on A6 cells’ suspensions, which are cells overexpressing ENaC derived from Xenopus laevis kidney. THz spectra were investigated with or without amiloride. When ENaC was inhibited by amiloride, a substantial increase in THz absorption was noticed. Molecular modeling methods were used to explain the observed spectroscopic differences. THz spectra were simulated using the structural models of ENaC and ENaC—amiloride complexes built here. The agreement between the experiment and the simulations allowed us to validate the structural models and to describe the amiloride dynamics inside the channel pore. The amiloride binding site validated using THz spectroscopy agrees with previous mutagenesis studies. Altogether, our results show that THz spectroscopy can be successfully used to discriminate between native and inhibited ENaC channels and to characterize the dynamics of channels in the presence of their specific antagonist.  相似文献   

5.
Chemical exchange two‐dimensional infrared (2DIR) spectroscopy is applied to investigate ion pairing dynamics occurring on picosecond timescales. SeCN? ion is used as a vibrational probe. The SeCN? ion dissolved in N,N‐dimethyl formamide (DMF) has a sufficiently long vibrational lifetime and can form a contact ion pair with Li+ ion in DMF. The CN stretch frequency of the contact ion pair is significantly blue‐shifted from that of free SeCN? so the free SeCN? ion can be spectrally distinct from the contact ion pair in DMF. Therefore, we were able to directly monitor the ion pairing dynamics of Li+ and SeCN? in real time by using ultrafast 2DIR spectroscopy. As a result, we have determined the dissociation time constant of the LiSeCN contact ion pair to be 420±40 ps.  相似文献   

6.
The understanding of the molecular mechanisms underlying the early stages of crystallisation is still incomplete. In the case of calcium carbonate, experimental and computational evidence suggests that phase separation relies on so‐called pre‐nucleation clusters (PNCs). A thorough thermodynamic analysis of the enthalpic and entropic contributions to the overall free energy of PNC formation derived from three independent methods demonstrates that solute clustering is driven by entropy. This can be quantitatively rationalised by the release of water molecules from ion hydration layers, explaining why ion association is not limited to simple ion pairing. The key role of water release in this process suggests that PNC formation should be a common phenomenon in aqueous solutions.  相似文献   

7.
徐福兴  王亮  罗婵  丁传凡 《分析化学》2011,(10):1501-1505
本研究设计了一种新型用于二次离子质谱的一次离子源及其离子光学系统.通过此一次离子源,大气压下产生的一次离子可以被加速、聚焦并传输到位于真空条件下的样品表面并电离样品得到可供质谱仪分析的二次离子.通过理论模拟结合实验系统研究了此一次离子源的主要组成部分——离子光学系统的原理、结构和性能.以电喷雾电离源为例,成功地将大气压...  相似文献   

8.
In the present work, we have found by an atomistic molecular dynamics simulation that hydrogen atoms originating from the residues of a prokaryotic ClC protein (EcClC) stabilize the chloride ion without water molecules in the pore of ClC protein. When the chloride ion conduction is simulated by pulling a chloride ion along the pore axis, the free energy barrier for chloride ion conduction is calculated to be low (4 kcal/mol), although the chloride ion is stripped of its hydration shell as it passes through the dehydrated pore region. The calculation of the number of hydrogen atoms surrounding the chloride ion reveals that water molecules hydrating the chloride ion are replaced by polar and non‐polar hydrogen atoms protruding from the protein residues. From the analysis of the pair interaction energy between the chloride ion and these hydrogen atoms, it is realized that the hydrogen atoms from the protein residues stabilize the chloride ion at the dehydrated region instead of water molecules, by which the energetic penalty for detaching water molecules from the permeating ion is compensated. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

9.
以铜离子为模板的褐藻酸凝胶对铜离子的选择性富集研究   总被引:2,自引:0,他引:2  
邬建敏  王永尧  杨晨磊 《分析化学》2002,30(12):1414-1417
以铜离子为模板,制备了褐藻酸凝胶(Cu-alginate),通过吸附实验及过柱渗滤实验,试验了该吸附剂对铜离子的选择性吸附性能,并且采用该吸附剂富集了自来水中微量的Cu^2 ,结合原子吸收法测定了水样中Cu^2 的含量。结果表明:该吸附剂对Cu^2 有较高的选择性吸附性能,显著优于一些化学合成铜离子模板缩聚物及非铜模板褐藻酸凝胶(如Ca-alginate),非重金属离子(如K^ 、Na^ 、Ca^2 )及某些重金属离子(如Ni^2 、Cd^2 )等对Cu^2 的吸附均不产生明显干扰。用该吸附剂富集水中的微量铜离子,回收率可达97.7%。  相似文献   

10.
Several covalent strategies towards surface charge‐reversal in nanochannels have been reported with the purpose of manipulating ion transport. However, covalent routes lack dynamism, modularity and post‐synthetic flexibility, and hence restrict their applicability in different environments. Here, we introduce a facile non‐covalent approach towards charge‐reversal in nanochannels (<10 nm) using strong charge‐transfer interactions between dicationic viologen (acceptor) and trianionic pyranine (donor). The polarity of ion transport was switched from anion selective to ambipolar to cation selective by controlling the extent of viologen bound to the pyranine. We could also regulate the ion transport with respect to pH by selecting a donor with pH‐responsive functional groups. The modularity of this approach further allows facile integration of various functional groups capable of responding to stimuli such as light and temperature to modulate the transport of ions as well as molecules.  相似文献   

11.
Ion mobility-mass spectrometry   总被引:3,自引:0,他引:3  
This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.  相似文献   

12.
Ion activation methods for tandem mass spectrometry   总被引:7,自引:0,他引:7  
This tutorial presents the most common ion activation techniques employed in tandem mass spectrometry. In-source fragmentation and metastable ion decompositions, as well as the general theory of unimolecular dissociations of ions, are initially discussed. This is followed by tandem mass spectrometry, which implies that the activation of ions is distinct from the ionization step, and that the precursor and product ions are both characterized independently by their mass/charge ratios. In collision-induced dissociation (CID), activation of the selected ions occurs by collision(s) with neutral gas molecules in a collision cell. This experiment can be done at high (keV) collision energies, using tandem sector and time-of-flight instruments, or at low (eV range) energies, in tandem quadrupole and ion trapping instruments. It can be performed using either single or multiple collisions with a selected gas and each of these factors influences the distribution of internal energy that the activated ion will possess. While CID remains the most common ion activation technique employed in analytical laboratories today, several new methods have become increasingly useful for specific applications. More recent techniques are examined and their differences, advantages and disadvantages are described in comparison with CID. Collisional activation upon impact of precursor ions on solid surfaces, surface-induced dissociation (SID), is gaining importance as an alternative to gas targets and has been implemented in several different types of mass spectrometers. Furthermore, unique fragmentation mechanisms of multiply-charged species can be studied by electron-capture dissociation (ECD). The ECD technique has been recognized as an efficient means to study non-covalent interactions and to gain sequence information in proteomics applications. Trapping instruments, such as quadrupole ion traps and Fourier transform ion cyclotron resonance instruments, are particularly useful for the photoactivation of ions, specifically for fragmentation of precursor ions by infrared multiphoton dissociation (IRMPD). IRMPD is a non-selective activation method and usually yields rich fragmentation spectra. Lastly, blackbody infrared radiative dissociation is presented with a focus on determining activation energies and other important parameters for the characterization of fragmentation pathways. The individual methods are presented so as to facilitate the understanding of each mechanism of activation and their particular advantages and representative applications.  相似文献   

13.
Neutron diffraction data with hydrogen isotope substitution on aqueous solutions of NaCl and KCl at concentrations ranging from high dilution to near-saturation are analyzed using the Empirical Potential Structure Refinement technique. Information on both the ion hydration shells and the microscopic structure of the solvent is extracted. Apart from obvious effects due to the different radii of the three ions investigated, it is found that water molecules in the hydration shell of K+ are orientationally more disordered than those hydrating a Na+ ion and are inclined to orient their dipole moments tangentially to the hydration sphere. Cl- ions form instead hydrogen-bonded bridges with water molecules and are readily accommodated into the H-bond network of water. The results are used to show that concepts such as structure maker/breaker, largely based on thermodynamic data, are not helpful in understanding how these ions interact with water at the molecular level.  相似文献   

14.
It has been reported that ion enrichment phenomena are observed in liquid chromatographic processes with an aqueous mobile phase on the columns packed with nonionic materials. However, the mechanism of the ion enrichment is not at all well understood. In this study, we investigated the retention and enrichment behaviors of simple inorganic anions on a C18‐bonded silica column and a cross‐linked hydroxylated methacrylic polymer gel column with pure aqueous mobile phases containing various electrolytes. We show that the stacking of ionic solutes can successfully be accounted for by the ion partition model, and it takes place due to the effect of the background coion in the eluent and/or sample solution on the distribution of the ions between the bulk water and the water incorporated in the packing material, which acts as the stationary phase. Using the ion exclusion effect of fixed anionic charges on a packing material as well as the ion stacking by partition, we developed a simple and versatile method for effective enrichment of anionic solutes in aqueous solutions. The enrichment factor and the elution time of the stacked ion zone can be predicted by the ion partition model.  相似文献   

15.
《中国化学会会志》2018,65(6):637-653
This review summarizes experimental activities to study the structure of molecular ions via He tagging. The method is based on the attachment of a weakly bound helium atom to a cold ion followed by laser‐induced predissociation (LIP). Since my early involvements (it started in 1977 with a letter from Y.T. Lee), radio frequency (rf) ion traps and ion guides have been important elements in instruments dedicated to ion spectroscopy. Accumulating ions in a ring electrode trap (RET) and confining them together with the laser‐induced photofragments in a long octopole has been demonstrated in 1978 in Berkeley via photodissociation of metastable O2+ ions. In the early stage of this instrument, as well as in various further developments, supersonic expansions have been used to create weakly bound complexes. An important step forward for ion spectroscopy was to push the conditions of cryogenic ion traps so far that, finally, He atoms could be attached to almost any mass‐selected ion of interest, including multiply charged ions and C60+. Currently, modern ion storage instruments reach temperatures below 3 K and can be operated at helium densities above 1016 cm−3, opening up many avenues of application in spectroscopy, reaction dynamics, and analytical chemistry. In addition to a personal historical review, I discuss recent progress made with new cryogenic ion traps, especially in the field of He tagging. He‐M+ ions have been formed via ternary association for all kind of M+ ions ranging from atoms such as He+, N+, or Fe+ via molecules N2+, VO+, and H3+ to various polyatomic ions. The in situ synthesis of tagged ions made unique discoveries possible, such as determining the structure of doubly charged benzene, the first identification of a carrier of diffuse interstellar bands, or the characterization of the fundamental 4 electron 4 center system He–H3+. In the conclusions, hints to additional applications will be given, emphasizing on the versatility of temperature‐variable ion traps.  相似文献   

16.
Biological ion channels and ion pumps with sub‐nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub‐nanometer solid‐state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin‐based metal–organic framework membrane with pore sizes comparable to hydrated ions. We show that the molecular‐size pores enable precise and robust optoelectronic ion transport modulation in a broad range of concentrations, unparalleled with conventional solid‐state nanopores. Upon decoration with platinum nanoparticles to form a Schottky barrier photodiode, photovoltage across the membrane is generated with “uphill” ion transport from low concentration to high concentration. These results may spark applications in energy conversion, ion sieving, and artificial photosynthesis.  相似文献   

17.
Nitrate aqueous solutions, Mg(NO(3))(2), Ca(NO(3))(2), Sr(NO(3))(2), and Pb(NO(3))(2), are investigated using Raman spectroscopy and free energy profiles from molecular dynamics (MD) simulations. Analysis of the in-plane deformation, symmetric stretch, and asymmetric stretch vibrational modes of the nitrate ions reveal perturbation caused by the metal cations and hydrating water molecules. Results show that Pb(2+) has a strong tendency to form contact ion pairs with nitrate relative to Sr(2+), Ca(2+), and Mg(2+), and contact ion pair formation decreases with decreasing cation size and increasing cation charge density: Pb(2+) > Sr(2+) > Ca(2+) > Mg(2+). In the case of Mg(2+), the Mg(2+)-OH(2) intermolecular modes indicate strong hydration by water molecules and no contact ion pairing with nitrate. Free energy profiles provide evidence for the experimentally observed trend and clarification between solvent-separated, solvent-shared, and contact ion pairs, particularly for Mg(2+) relative to other cations.  相似文献   

18.
The formation, stabilisation and reactivity of contact ion pairs of non‐protic imidazolium ionic liquids (ILs) in solution are conceptualized in light of selected experimental evidence as well theoretical calculations reported mainly in the last ten years. Electric conductivity, NMR, ESI‐MS and IR data as well as theoretical calculations support not only the formation of contact ion pairs in solution, but also the presence of larger ionic and neutral aggregates even when dissolved in solvents with relatively high dielectric constants, such as acetonitrile and DMSO. The presence of larger imidazolium supramolecular aggregates is favoured at higher salt concentrations in solvents of low dielectric constant for ILs that contain shorter N‐alkyl side chains associated with anions of low coordination ability. The stability and reactivity of neutral contact species are also dependent on the nature of the anion, imidazolium substituents, and are more abundant in ILs containing strong coordinating anions, in particular those that can form charge transfer complexes with the imidazolium cation. Finally, some ILs display reactivities as contact ion pairs rather than solvent‐separated ions.  相似文献   

19.
Solar energy can be harvested by biological systems to regulate the directional transport of protons and ions across cells and organelles. Structural and functional bio-mimic photo-active ion nanofluidic conductors, usually in the forms of ion channels and ion pumps, have been increasingly applied to realize active ion transport. However, progress in attaining effective light-driven active transport of ions (protons) has been constrained by the inherent limitations of membrane materials and their chemical and topological structures. Recent advances in the construction of photo-responsive physical ion pump in all-solid-state membranes could potentially lead to new classes of membrane-based materials for active ion transport. In this concept, the development of the state-of-the-art technologies for manufacturing artificial light-driven active ion transport systems are presented and discussed, which mainly involves the utilization of solar energy to realize two types of active ion transport, chemically and physically active ion transport. Afterward, we summarize the key factors towards culminating highly effective and selective membranes for active ion transport. To conclude, we highlight the promising application perspectives of this light-driven active ion transport technique in the field of energy conversion, bio-interfaces and water treatment.  相似文献   

20.
Molecular dynamics simulations are carried out to investigate the permeation of ions and water in a membrane consisting of single wall carbon nanotubes possessing no surface charges connecting two reservoirs. Our simulations reveal that there are changes in the first hydration shell of the ions upon confinement in tubes of 0.82 or 0.90 nm effective internal diameter. Although the first minimum in the g(r) is barely changed in the nanotube compared to in the bulk solution, the hydration number of Na(+) ion is reduced by 1.0 (from 4.5 in bulk to 3.5 in the 0.90 nm tube) and the hydration number is reduced further in the 0.82 nm tube. The changes in the hydration shell of Cl(-) ion are negligible, within statistical errors. The water molecules of the first hydration shell of both ions exchange less frequently inside the tube than in the bulk solution. We compare ion trajectories for ions in the same tube under identical reservoir conditions but with different numbers of ions in the tubes. This permits investigation of changes in structure and dynamics which arise from multiple ion occupancy in a carbon nanotube possessing no surface charges. We also investigated the effects of tube flexibility. Ions enter the tubes so as to form a train of ion pairs. We find that the radial distribution profiles of Na(+) ions broaden significantly systematically with increasing number of ion pairs in the tube. The radial distribution profiles of Cl(-) ions change only slightly with increasing number of ions in the tube. Trajectories reveal that Na(+) ions do not pass each other in 0.90 nm tubes, while Cl(-) ions pass each other, as do ions of opposite charge. An ion entering the tube causes the like-charged ions preceding it in the tube to be displaced along the tube axis and positive or negative ions will exit the tube only when one or two other ions of the same charge are present in the tube. Thus, the permeation mechanism involves multiple ions and Coulomb repulsion among the ions plays an essential role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号