首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new ditopic ion‐pair receptor 1 was designed, synthesized, and characterized. Detailed binding studies served to confirm that this receptor binds fluoride and chloride ions (studied as their tetraalkylammonium salts) and forms stable 1:1 complexes in CDCl3. Treatment of the halide‐ion complexes of 1 with Group I and II metal ions (Li+, Na+, K+, Cs+, Mg2+, and Ca2+; studied as their perchlorate salts in CD3CN) revealed unique interactions that were found to depend on both the choice of the added cation and the precomplexed anion. In the case of the fluoride complex [ 1? F]? (preformed as the tetrabutylammonium (TBA+) complex), little evidence of interaction with the K+ ion was seen. In contrast, when this same complex (i.e., [ 1? F]? as the TBA+ salt) was treated with the Li+ or Na+ ions, complete decomplexation of the receptor‐bound fluoride ion was observed. In sharp contrast to what was seen with Li+, Na+, and K+, treating complex [ 1? F]? with the Cs+ ion gave rise to a stable, receptor‐bound ion‐pair complex [Cs ?1? F] that contains the Cs+ ion complexed within the cup‐like cavity of the calix[4]pyrrole, which in turn was stabilized in its cone conformation. Different complexation behavior was observed in the case of the chloride complex [ 1? Cl]?. In this case, no appreciable interaction was observed with Na+ or K+. In addition, treating [ 1? Cl]? with Li+ produces a tightly hydrated dimeric ion‐pair complex [ 1? LiCl(H2O)]2 in which two Li+ ions are bound to the crown moiety of the two receptors. In analogy to what was seen in the case of [ 1? F]?, exposure of [ 1? Cl]? to the Cs+ ion gives rise to an ion‐pair complex [Cs ?1? Cl] in which the cation is bound within the cup of the calix[4]pyrrole. Different complexation modes were also observed when the binding of the fluoride ion was studied by using the tetramethylammonium and tetraethylammonium salts.  相似文献   

2.
A ditopic ion‐pair receptor ( 1 ), which has tunable cation‐ and anion‐binding sites, has been synthesized and characterized. Spectroscopic analyses provide support for the conclusion that receptor 1 binds fluoride and chloride anions strongly and forms stable 1:1 complexes ([ 1? F]? and [ 1? Cl]?) with appropriately chosen salts of these anions in acetonitrile. When the anion complexes of 1 were treated with alkali metal ions (Li+, Na+, K+, Cs+, as their perchlorate salts), ion‐dependent interactions were observed that were found to depend on both the choice of added cation and the initially complexed anion. In the case of [ 1? F]?, no appreciable interaction with the K+ ion was seen. On the other hand, when this complex was treated with Li+ or Na+ ions, decomplexation of the bound fluoride anion was observed. In contrast to what was seen with Li+, Na+, K+, treating [ 1?F ]? with Cs+ ions gave rise to a stable, host‐separated ion‐pair complex, [F ?1? Cs], which contains the Cs+ ion bound in the cup‐like portion of the calix[4]pyrrole. Different complexation behavior was seen in the case of the chloride complex, [ 1? Cl]?. Here, no appreciable interaction was observed with Na+ or K+. In contrast, treating with Li+ produces a tight ion‐pair complex, [ 1? Li ? Cl], in which the cation is bound to the crown moiety. In analogy to what was seen for [ 1? F]?, treatment of [ 1? Cl]? with Cs+ ions gives rise to a host‐separated ion‐pair complex, [Cl ?1? Cs], in which the cation is bound to the cup of the calix[4]pyrrole. As inferred from liposomal model membrane transport studies, system 1 can act as an effective carrier for several chloride anion salts of Group 1 cations, operating through both symport (chloride+cation co‐transport) and antiport (nitrate‐for‐chloride exchange) mechanisms. This transport behavior stands in contrast to what is seen for simple octamethylcalix[4]pyrrole, which acts as an effective carrier for cesium chloride but does not operates through a nitrate‐for‐chloride anion exchange mechanism.  相似文献   

3.
应用红外及拉曼光谱研究了不同浓度的四氟硼酸锂在4-乙氧甲基-碳酸乙烯酯溶剂中的离子溶剂化和离子缔合现象。环形变谱带和羰基伸缩振动谱带的分裂,以及骨架环振动谱带的迁移和分裂表明,锂离子与溶剂分子间存在着较强的相互作用,这种相互作用是通过溶剂羰基氧原子实现的。利用光谱拟合技术定量计算了表观溶剂化数。随着电解质锂盐浓度的增加,溶剂化数逐渐由4.32降至1.26。此外,四氟硼酸根v1谱带的分裂表明在高浓度溶液中存在着光谱自由的四氟硼酸根、直接接触离子对和离子对二聚体。  相似文献   

4.
The mechanism of dissolution of the Li+ ion in an electrolytic solvent is investigated by the direct ab initio molecular dynamics (AIMD) method. Lithium fluoroborate (Li+BF4?) and ethylene carbonate (EC) are examined as the origin of the Li+ ion and the solvent molecule, respectively. This salt is widely utilized as the electrolyte in the lithium ion secondary battery. The binding of EC to the Li+ moiety of the Li+BF4? salt is exothermic, and the binding energies at the CAM–B3LYP/6‐311++G(d,p) level for n=1, 2, 3, and 4, where n is the number of EC molecules binding to the Li+ ion, (EC)n(Li+BF4?), are calculated to be 91.5, 89.8, 87.2, and 84.0 kcal mol?1 (per EC molecule), respectively. The intermolecular distances between Li+ and the F atom of BF4? are elongated: 1.773 Å (n=0), 1.820 Å (n=1), 1.974 Å (n=2), 1.942 Å (n=3), and 4.156 Å (n=4). The atomic bond populations between Li+ and the F atom for n=0, 1, 2, 3, and 4 are 0.202, 0.186, 0.150, 0.038, and 0.0, respectively. These results indicate that the interaction of Li+ with BF4? becomes weaker as the number of EC molecules is increased. The direct AIMD calculation for n=4 shows that EC reacts spontaneously with (EC)3(Li+BF4?) and the Li+ ion is stripped from the salt. The following substitution reaction takes place: EC+(EC)3(Li+BF4?)→(EC)4Li+?(BF4?). The reaction mechanism is discussed on the basis of the theoretical results.  相似文献   

5.
Density functional theory calculations were performed at the B3LYP/6‐311++G(d,p) level to systematically explore the geometrical multiplicity and binding strength for the complexes formed by alkaline and alkaline earth metal cations, viz. Li+, Na+, K+, Be2+, Mg2+, and Ca2+ (Mn+, hereinafter), with 2‐(3′‐hydroxy‐2′‐pyridyl)benzoxazole. A total of 60 initial structures were designed and optimized, of which 51 optimized structures were found, which could be divided into two different types: monodentate complexes and bidentate complexes. In the cation‐heteroatom complex, bidentate binding is generally stronger than monodentate binding, and of which the bidentate binding with five‐membered ring structure has the strongest interaction. Energy decomposition revealed that the total binding energies mainly come from electrostatic interaction for alkaline metal ion complexes and orbital interaction energy for alkaline earth metal ion complex. In addition, the electron localization function analysis show that only the Be? O and Be? N bond are covalent character, and others are ionic character. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Chemical exchange two‐dimensional infrared (2DIR) spectroscopy is applied to investigate ion pairing dynamics occurring on picosecond timescales. SeCN? ion is used as a vibrational probe. The SeCN? ion dissolved in N,N‐dimethyl formamide (DMF) has a sufficiently long vibrational lifetime and can form a contact ion pair with Li+ ion in DMF. The CN stretch frequency of the contact ion pair is significantly blue‐shifted from that of free SeCN? so the free SeCN? ion can be spectrally distinct from the contact ion pair in DMF. Therefore, we were able to directly monitor the ion pairing dynamics of Li+ and SeCN? in real time by using ultrafast 2DIR spectroscopy. As a result, we have determined the dissociation time constant of the LiSeCN contact ion pair to be 420±40 ps.  相似文献   

7.
Understanding and controlling the kinetics of O2 reduction in the presence of Li+‐containing aprotic solvents, to either Li+‐O2? by one‐electron reduction or Li2O2 by two‐electron reduction, is instrumental to enhance the discharge voltage and capacity of aprotic Li‐O2 batteries. Standard potentials of O2/Li+‐O2? and O2/O2? were experimentally measured and computed using a mixed cluster‐continuum model of ion solvation. Increasing combined solvation of Li+ and O2? was found to lower the coupling of Li+‐O2? and the difference between O2/Li+‐O2? and O2/O2? potentials. The solvation energy of Li+ trended with donor number (DN), and varied greater than that of O2? ions, which correlated with acceptor number (AN), explaining a previously reported correlation between Li+‐O2? solubility and DN. These results highlight the importance of the interplay between ion–solvent and ion–ion interactions for manipulating the energetics of intermediate species produced in aprotic metal–oxygen batteries.  相似文献   

8.
The effects of polymer charge density on the counterion-specific and solvent-specific coil–globule transition of polycarboxylates were investigated for alkali metal salts of poly(styrene-alt-maleic acid) (PSaltMA) and poly(acrylic acid) (PAA) in aqueous organic solvent mixtures. The order of the transition region, namely, the counterion specificity for the transition in, e.g., aqueous dimethyl sulfoxide (DMSO), was the same for both polyelectrolytes, Na+?>?K+?>?Cs+?>?Li+, while the discrepancy of the transition region between Na+ and Li+ systems was appreciably narrower for PSaltMA (approximately 20 vol%) than that of PAA (approximately 29 vol%). Such diminished counterion specificity for the former was ascribed to the nonuniform charge array. Namely, PSaltMA has two kinds of nearest charge arrays, one is the shorter spacing between the maleic acid carboxyl groups and the other is the longer one via one styrene group. Thus, the former may be favorable for binding of the smaller counterion (i.e., Li+) and the latter for the larger one (Cs+). Such a “size-fitting effect” for the counterion binding was in fact further confirmed with variously neutralized PAAs. For example, the counterion specificity in aqueous DMSO of PAA40 that was neutralized to 40 % was Cs+?>?K+?>?Na+?>?Li+, showing that the largest counterion becomes most favorable in inducing the transition with increasing average charge spacing. In fact, the nuclear magnetic resonance line width measurement for 133Cs suggested that the counterion binding strength of the large counterion for PAA increases with decreasing charge density from 100 to 40 % neutralization.  相似文献   

9.
Hydration of gaseous guanidinium (Gdm+) with up to 100 water molecules attached was investigated using infrared photodissociation spectroscopy in the hydrogen stretch region between 2900 and 3800 cm–1. Comparisons to IR spectra of low-energy computed structures indicate that at small cluster size, water interacts strongly with Gdm+ with three inner shell water molecules each accepting two hydrogen bonds from adjacent NH2 groups in Gdm+. Comparisons to results for tetramethylammonium (TMA+) and Na+ enable structural information for larger clusters to be obtained. The similarity in the bonded OH region for Gdm(H2O)20 + vs. Gdm(H2O)100 + and the similarity in the bonded OH regions between Gdm+ and TMA+ but not Na+ for clusters with <50 water molecules indicate that Gdm+ does not significantly affect the hydrogen-bonding network of water molecules at large size. These results indicate that the hydration around Gdm+ changes for clusters with more than about eight water molecules to one in which inner shell water molecules only accept a single H-bond from Gdm+. More effective H-bonding drives this change in inner-shell water molecule binding to other water molecules. These results show that hydration of Gdm+ depends on its local environment, and that Gdm+ will interact with water even more strongly in an environment where water is partially excluded, such as the surface of a protein. This enhanced hydration in a limited solvation environment may provide new insights into the effectiveness of Gdm+ as a protein denaturant.  相似文献   

10.
Extraction of lithium ions from salt‐lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST‐1 metal–organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST‐1‐6.7, with unique anchored three‐dimensional sulfonate networks, shows a very high Li+ conductivity of 5.53×10?4 S cm?1 at 25 °C, 1.89×10?3 S cm?1 at 70 °C, and Li+ flux of 6.75 mol m?2 h?1, which are five orders higher than that of the pristine HKUST‐1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li+, Na+, K+, and Mg2+ ions to the sulfonate groups, the PSS@HKUST‐1‐6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li+/Na+, Li+/K+, Li+/Mg2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li+ extraction membranes.  相似文献   

11.
Ab initio and molecular mechanics studies of LiPF6 and the interaction of the salt with the poly(ethylene oxide) (PEO) oligomer dimethylether have been performed. Optimized geometries and energies of Li+/PF6? complexes obtained from quantum chemistry revealed a preference for C3V symmetry structures for Li+–P separations under 2.8 Å, C2V symmetry for Li+–P in the range of 2.8–3.3 Å and C4V symmetry for Li+–P separations larger than 3.3 Å. Electron correlation effects were found to make an insignificant contribution to binding in the Li+/PF6? complex. By contrast, analogous studies of PF6?/PF6? and PF6?/dimethyl ether complexes revealed important contributions of electron correlation to the complex interaction energy. A molecular mechanics force field for simulations of PEO/LiPF6 melts was parameterized to reproduce the geometries and energies of Li+/PF6?, PF6?/PF6?, PF6?/dimethylether complexes. Molecular dynamics simulations of PEO/LiPF6 melts were performed to validate this quantum chemistry‐based force field. Accurate reproduction of the increase in solution density with addition of salt was found while the electrical conductivity of PEO/LiPF6 solutions was found to be within an order of magnitude of the experimental values. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 641–654, 2001  相似文献   

12.
A new series of tris(2‐aminoethyl)amine (tren)‐based L ‐alanine amino acid backboned tripodal hexaamide receptors (L1–L5) with various attached moieties based on electron‐withdrawing fluoro groups and lipophilicity have been synthesized and characterized. Detailed binding studies of L1–L5 with different anions, such as halides (F?, Cl?, Br?, and I?) and oxyanions (AcO?, BzO? (Bz=benzoyl), NO3?, H2PO4?, and HSO4?), have been carried out by isothermal titration calorimetric (ITC) experiments in acetonitrile/dimethylsulfoxide (99.5:0.5 v/v) at 298 K. ITC titration experiments have clearly shown that receptors L1–L4 invariably form 1:1 complexes with Cl?, AcO?, BzO?, and HSO4?, whereas L5 forms a 1:1 complex only with AcO?. In the case of Br?, I?, and NO3?, no appreciable heat change is observed owing to weak interactions between these anions and receptors; this is further confirmed by 1H NMR spectroscopy. The ITC binding studies of F? and H2PO4? do not fit well for a 1:1 binding model. Furthermore, ITC binding studies also revealed slightly higher selectivity of this series of receptors towards AcO? over Cl?, BzO?, and HSO4?. Solid‐state structural evidence for the recognition of Cl? by this new category of receptor was confirmed by single‐crystal X‐ray structural analysis of the complex of tetrabutylammonium chloride (TBACl) and L1. Single‐crystal X‐ray diffraction clearly showed that the pentafluorophenyl‐functionalized amide receptor (L1) encapsulated Cl? in its cavity by hydrogen bonds from amides, and the cavity of L1 was capped with a TBA cation through hydrogen bonding and ion‐pair interactions to form a capped‐cleft orientation. To understand the role of the cationic counterpart in solution‐state Cl? binding processes with this series of receptors (L1–L4), a detailed Cl? binding study was carried out with three different tetraalkylammonium (Me4N+, Et4N+, and Bu4N+) salts of Cl?. The binding affinities of these receptors with different tetralkylammonium salts of Cl? gave binding constants with the TBA cation in the following order: butyl>ethyl>methyl. This study further supports the role of the TBA countercation in ion‐pair recognition by this series of receptors.  相似文献   

13.
Near infrared spectroscopy (NIR) was used to characterize the nature of specific interactions in blends of lightly sulfonated polystyrene ionomers (M‐SPS where M = Zn+2, Mn+2, or Li+) and polycaprolactam (PA6). The assignments of the NIR overtone bands that arise due to the interactions between the cation of the ionomer, and the amide groups were made using spectra of model compounds. The relative populations of the different environments of the N? H groups were qualitatively determined by deconvoluting the NIR spectra into five absorbances representing hydrogen‐bonded N? H in crystalline and amorphous phases and an ion‐amide complex. The ion‐amide complex was specific for the blends. The interpolymer interactions were sensitive to composition and temperature, but qualitatively the behavior was the same for all three ionomer salts investigated. © 2008 Wiley Periodicals, Inc. JPolym Sci Part B: Polym Phys 46: 1602–1610, 2008  相似文献   

14.
The properties of the ion associates of benzophenone (BP) free radicals with Na+ and Li+ have been investigated polarographically in dimethylformamide. It was found that BP? forms ion pairs with Na+ (Kass=69 M?1) and two types of associates with Li+: BP?...Li+ (Kass,1=330 M?1) and BP?...(Li+)2(Kass,2M?2). The influence of temperature on the equilibria was also discussed. The ion associates with Li+ disappear in a disproportionation reaction; the mechanism and kinetics of that reaction were studied. It was found that the main contribution to the overall kinetics are made by the pairs (a) BP?...Li++BP?...Li+, (b) BP?+BP?...(Li+)2 (c) BP?...Li++BP?...(Li+)2.  相似文献   

15.
Ab initio supermolecule computations of systems consisting of a peptide model (N-methyl-acetamide or N-methyl-propionamide) and monoatomic ions (Li+, Na+, F?, Cl?) have been analyzed and discussed in an attempt to throw more light on the possible role of charge transfer and related effects in biopolymers containing peptide links. Juxtaposition of ions to a peptide model appears to involve considerable overall charge transfer especially in the case of anions. This supports the assignment to charge transfer of long range electronic effects (like conduction) in polypeptides. On the other hand, induced polarization of the peptide system, which accompanies charge transfer suggests that weakening of hydrogen bonds (especially by cations) may activate long range transmission of perturbations via the concerted weakening of hydrogen bonds. A detailed analysis of the individual molecular orbitals in terms of valence–orbital weight and of hybridization has also been carried out. It is shown in particular that only a limited number of molecular orbitals are involved in the ion–peptide interaction, and that the changes at individual atoms are of different types and affect differently different regions of the molecule. Comparisons between minimal basis and 4-31G calculations as well as ad hoc auxiliary computations on water–ion complexes have been made to check that conclusions based on the supermolecule approach are at least qualitatively reliable.  相似文献   

16.
A molecular dynamics study is performed to determine the dynamics and transport properties of the ions on the molten interface between anode metal Li and electrolyte KCl. Radial distribution function of the ionic pair and the behavior of the mean‐square displacement (MSD) as a function of time (t) indicate that KCl and metal Li are in the molten state at 2,200 K in the canonical ensemble. The dynamics of the ionic transport are characterized by studying MSD for the centers of mass of the ions at different temperatures. Diffusion coefficient is evaluated from the linear slope of the MSD (t) function in the range of 0–500 ps. The MSD and diffusion coefficient of the Li+ ions are much larger than those of the Cl? and K+ ions due to the difference in ionic characteristic. The transport process has been dominated by the Li+ ions on the molten interface and the Li+ ions are main charge carriers. The energy barrier of the Li+ ions transporting into the molten KCl is fitted to be 5.28 kcal/mol in the light of the activation model. The electrical conductivity of the Li+ ions transporting into the molten KCl are calculated from the Nernst–Einstein formula to be in the range of 0.2–0.3 S cm?1. The current density resulted from the Li+ ions through the interface are estimated to be an order of 106 A cm?2, which may be the value corresponding to a larger concentration gradient of the Li+ ions. Simulated results at different temperatures show that the diffusion coefficient, conductivity and current density have increased with the temperature. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
Distinct microheterogeneity has been observed in the [OMIM]Br–H2O system, which is interestingly perturbed by the addition of Li+ salts, indicating unusual diffusivity of [OMIM]Br and H2O molecules. However, the diffusional dynamics of water clusters show contrasting salting behavior at higher concentrations of Li+ salts, following the classical salting phenomenon in lower amounts. In contrast, the existing microheterogeneity in the [BMIM]Br–H2O system is weak enough to show any perturbation caused by the Li+ salts on the NMR time scale.  相似文献   

18.
The stabilization energies (ΔEform) calculated for the formation of the Li+ complexes with mono‐, di‐ tri‐ and tetra‐glyme (G1, G2, G3 and G4) at the MP2/6‐311G** level were ?61.0, ?79.5, ?95.6 and ?107.7 kcal mol?1, respectively. The electrostatic and induction interactions are the major sources of the attraction in the complexes. Although the ΔEform increases by the increase of the number of the O???Li contact, the ΔEform per oxygen atom decreases. The negative charge on the oxygen atom that has contact with the Li+ weakens the attractive electrostatic and induction interactions of other oxygen atoms with the Li+. The binding energies calculated for the [Li(glyme)]+ complexes with TFSA? anion (glyme=G1, G2, G3, and G4) were ?106.5, ?93.7, ?82.8, and ?70.0 kcal mol?1, respectively. The binding energies for the complexes are significantly smaller than that for the Li+ with the TFSA? anion. The binding energy decreases by the increase of the glyme chain length. The weak attraction between the [Li(glyme)]+ complex (glyme=G3 and G4) and TFSA? anion is one of the causes of the fast diffusion of the [Li(glyme)]+ complex in the mixture of the glyme and the Li salt in spite of the large size of the [Li(glyme)]+ complex. The HOMO energy level of glyme in the [Li(glyme)]+ complex is significantly lower than that of isolated glyme, which shows that the interaction of the Li+ with the oxygen atoms of glyme increases the oxidative stability of the glyme.  相似文献   

19.
A potential energy function is developed to represent the interaction of small monovalent cations, Li+, Na+, and K+, with the backbone of polypeptides. The results are based on ab initio calculations up to the 6-31G* level of the interactions of the ions with acetamide and N-methylacetamide. Basis set superposition errors are corrected with the counterpoise method. A systematic overestimate of the bond polarities is taken into account by an empirical scaling procedure that uses the ratio of the experimental to ab initio dipole moment. The calculated binding energies obtained with this procedure show consistent convergence with different basis sets and are in good agreement with experimental data on cation–water and cation–dimethylformamide systems. Investigations of the calculated ab initio potential energy surface indicate that the cation–peptide interaction is dominated by electrostatics and includes a nonnegligible contribution from polarization of the peptide group by the ion. The induced polarization results in a steeper-than-Coulombic interaction and cannot be described by fixed ion–peptide partial charges electrostatics. Atomic polarizabilities located on the atoms of the ligand molecule are introduced to account for the induced polarization in the empirical energy function. A ~1/r4 attractive interaction appears in the potential function. The resulting radial and angular dependence of the potential energy surface is well reproduced. © 1995 by John Wiley & Sons, Inc.  相似文献   

20.
To obtain thermally stable and mechanically strong sodium and lithium conducting polymers, we prepared Na+ and Li+ poly(phenylene terephthalamide sulfonate salts) (MW ~ 5500). We also synthesized oligo(ethylene oxide) (3, 5, or 7 units of ethylene oxide) substituted ethylene carbonate and poly[oxymethylene-oligo(oxyethylene)]. These are high boiling point liquids with high dielectric constants as well as metal chelating properties. Polyelectrolyte systems were prepared by mixing Na+ or Li+ poly(phenylene terephthalamide sulfonate) salts with various amounts of modified ethylene carbonate and/or poly[oxymethylene-oligo(oxyethylene)]. Films (0.1–0.5 mm thick) obtained from the blends were found to have considerable mechanical strength; forming free standing films. The ionic conductivities of the Na+ and Li+ polyelectrolyte systems were 10?6?10?5 S/cm at 25°C. Thermal properties of these blend systems were investigated in detail. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号