首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein-conjugates are vital tools in biomedical research, drug discovery and imaging science. For example, functionalised monoclonal antibodies (mAbs) coupled to the desferrioxamine B (DFO) chelate and radiolabelled with 89Zr4+ ions are used as radiopharmaceuticals for diagnostic positron emission tomography (PET). In this context, protein functionalisation requires the formation of a covalent bond that must be achieved without compromising the biological properties of the mAb. Photochemistry offers new synthetic routes toward protein conjugates like 89Zr-mAbs but to harness the potential of light-induced conjugation reactions new photoactivatable reagents are required. Herein, we introduce two photoactivatable DFO-derivatives functionalised with an aryl azide (ArN3) for use in light-activated conjugation and radiosynthesis of 89Zr-mAbs. Incorporation of a tris-polyethylene glycol (PEG)3 linker between DFO and the ArN3 group furnished water-soluble chelates that were used in the one-pot, photoradiosynthesis of different 89Zr-radiolabelled protein conjugates with radiochemical yields up to 72.9±1.9 %. Notably, the DFO-PEG3 chelates can be readily synthesised in accordance with Good Laboratory Practice (GLP), which will facilitate clinical trials with photoradiolabelled 89Zr-mAbs.  相似文献   

3.
Why beat about the bush? An operationally simple and mild reaction based on the direct fixation of 11CO2 with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) has been developed for the synthesis of 11C‐labeled carbamates at 75 °C within 10 minutes in radiochemical yields above 70 % (see scheme). This strategy should be immediately useful for the construction of new radiotracers for positron emission tomography and other applications.

  相似文献   


4.
A simple and rapid method for 18F radiolabelling of [GaF3(BnMe2‐tacn)] by 18F/19F isotopic exchange is described. The use of MeCN/H2O or EtOH/H2O (75:25) and aqueous [18F]F? (up to 200 MBq) with heating (80 °C, 10 min) gave 66±4 % 18F incorporation at a concentration of 268 nm , and 37±5 % 18F incorporation at even lower concentration (27 nm ), without the need for a Lewis acid promoter. A solid‐phase extraction method was established to give [Ga18F19F2(BnMe2‐tacn)] in 99 % radiochemical purity in an EtOH/H2O mixture.  相似文献   

5.
Herein a new 11C radiolabelling strategy for the fast and efficient synthesis of thioureas and related derivatives using the novel synthon, 11CS2, is reported. This approach has enabled the facile labelling of a potent progesterone receptor (PR) agonist, [11C]Tanaproget, by the intramolecular reaction of the acyclic aminohydroxyl precursor with 11CS2, which has potential applications as a positron emission tomography radioligand for cancer imaging.  相似文献   

6.
Antibodies are currently the fastest‐growing class of therapeutics. Although naked antibodies have proven valuable as pharmaceutical agents, they have some limitations, such as low tissue penetration and a long circulatory half‐life. They have been conjugated to toxic payloads, PEGs, or radioisotopes to increase and optimize their therapeutic efficacy. Although nonspecific conjugation is suitable for most in vitro applications, it has become evident that site specifically modified antibodies may have advantages for in vivo applications. Herein we describe a novel approach in which the antibody fragment is tagged with two handles: one for the introduction of a fluorophore or 18F isotope, and the second for further modification of the fragment with a PEG moiety or a second antibody fragment to tune its circulatory half‐life or its avidity. Such constructs, which recognize Class II MHC products and CD11b, showed high avidity and specificity. They were used to image cancers and could detect small tumors.  相似文献   

7.
8.
A positron emission tomography (PET) tracer composed of 18F‐labeled maltohexaose (MH18F) can image bacteria in vivo with a sensitivity and specificity that are orders of magnitude higher than those of fluorodeoxyglucose (18FDG). MH18F can detect early‐stage infections composed of as few as 105 E. coli colony‐forming units (CFUs), and can identify drug resistance in bacteria in vivo. MH18F has the potential to improve the diagnosis of bacterial infections given its unique combination of high specificity and sensitivity for bacteria.  相似文献   

9.
An efficient one‐pot synthesis of hydroxamic acids from aldehydes and hydroxylamine is described. A fast, visible‐light‐mediated metal‐free hydroacylation of dialkyl azodicarboxylates was used to develop the subsequent addition of hydroxylamine hydrochloride. A range of aliphatic and aromatic aldehydes were employed in this reaction to give hydroxamic acids in high to excellent yields. Application of the current methodology was demonstrated in the synthesis of the anticancer medicine vorinostat.  相似文献   

10.
A convenient synthesis of sulfonamides and sulfonyl azides from thiols is described. In situ preparation of sulfonyl chlorides from thiols was accomplished by oxidation with chloramine‐T (=N‐chlorotosylamide=N‐chloro‐4‐methylbenzenesulfonamide), tetrabutylammonium chloride (Bu4NCl), and H2O. The sulfonyl chlorides were then further allowed to react with excess amine or NaN3 in the same pot.  相似文献   

11.
As part of a study to investigate the factors influencing the development of new, more effective metal‐complex‐based positron emission tomography (PET) imaging agents, the distorted octahedral complex, [GaCl(L)]?2 H2O has been prepared by reaction of 1‐benzyl‐1,4,7‐triazacyclononane‐4,7‐dicarboxylic acid hydrochloride (H2L?HCl) with Ga(NO3)3?9 H2O, which is a convenient source of GaIII for reactions in water. Spectroscopic and crystallographic data for [GaCl(L)]?2 H2O are described, together with the crystal structure of [GaCl(L)]?MeCN. Fluorination of this complex by Cl?/F? exchange was achieved in high yield by treatment with KF in water at room temperature over 90 minutes, although the reaction was complete in approximately 30 minutes if heated to 80 °C, giving [GaF(L)]?2 H2O in good yield. The same complex was obtained by hydrothermal synthesis from GaF3?3 H2O and Li2L, and has been characterised by single‐crystal X‐ray analysis, IR, 1H and 19F{1H} NMR spectroscopy and ESI+ MS. Radiofluorination of the pre‐formed [GaCl(L)]?2 H2O has been demonstrated on a 210 nanomolar scale in aqueous NaOAc at pH 4 by using carrier‐free 18F?, leading to 60–70 % 18F‐incorporation after heating to 80 °C for 30 minutes. The resulting radioproduct was purified easily by using a solid‐phase extraction (SPE) cartridge, leading to 98–99 % radiochemical purity. The [Ga18F(L)] is stable for at least 90 minutes in 10 % EtOH/NaOAc solution at pH 6, but defluorinates over this time scale at pH of approximately 7.5 in phosphate buffered saline (PBS) or human serum albumin (HSA). The subtle role of the Group 13 metal ion and co‐ligand donor set in influencing the pH dependence of this system is discussed in the context of developing potential new imaging agents for PET.  相似文献   

12.
Molecules labeled with fluorine‐18 are used as radiotracers for positron emission tomography. An important challenge is the labeling of arenes not amenable to aromatic nucleophilic substitution (SNAr) with [18F]F?. In the ideal case, the 18F fluorination of these substrates would be performed through reaction of [18F]KF with shelf‐stable readily available precursors using a broadly applicable method suitable for automation. Herein, we describe the realization of these requirements with the production of 18F arenes from pinacol‐derived aryl boronic esters (arylBPin) upon treatment with [18F]KF/K222 and [Cu(OTf)2(py)4] (OTf=trifluoromethanesulfonate, py=pyridine). This method tolerates electron‐poor and electron‐rich arenes and various functional groups, and allows access to 6‐[18F]fluoro‐L ‐DOPA, 6‐[18F]fluoro‐m‐tyrosine, and the translocator protein (TSPO) PET ligand [18F]DAA1106.  相似文献   

13.
Water stable! Radiochemists have recently discovered silicon chemistry as a tool for the introduction of 18F into biomolecules for positron emission tomography (PET) imaging. 18F‐labeled PET tracers must be stable towards defluorination under physiological conditions. Here, a theoretical model of organofluorosilane hydrolysis is developed that correlates with the experimentally determined hydrolytic half‐lives and allows estimation of the stability of newly designed compounds (see scheme).

  相似文献   


14.
Heat‐induced radiolabeling (HIR) yielded 89Zr‐Feraheme (FH) nanoparticles (NPs) that were used to determine NP pharmacokinetics (PK) by positron emission tomography (PET). Standard uptake values indicated a fast hepatic uptake that corresponded to blood clearance, and a second, slow uptake process by lymph nodes and spleen. By cytometry, NPs were internalized by circulating monocytes and monocytes in vitro. Using an IV injection of HIR 89Zr‐FH (rather than in vitro cell labeling), PET/PK provided a view of monocyte trafficking, a key component of the immune response.  相似文献   

15.
16.
Monocarbonyl activation of 2,2‐disubstituted malonic acids with benzotriazole leads to decarboxylation of one of the carboxy groups and formation of a C?H bond. Intermediate carbonyl benzotriazoles then readily acylate nucleophilic reagents and peptides resulting in libraries of conjugates and peptidomimetics.  相似文献   

17.
A general method for the synthesis of [18F]difluoromethylarenes from [18F]fluoride for radiopharmaceutical discovery is reported. The method is practical, operationally simple, tolerates a wide scope of functional groups, and enables the labeling of a variety of arenes and heteroarenes with radiochemical yields (RCYs, not decay‐corrected) from 10 to 60 %. The 18F‐fluorination precursors are readily prepared from aryl chlorides, bromides, iodides, and triflates. Seven 18F‐difluoromethylarene drug analogues and radiopharmaceuticals including Claritin, fluoxetine (Prozac), and [18F]DAA1106 were synthesized to show the potential of the method for applications in PET radiopharmaceutical design.  相似文献   

18.
Photochemistry provides a wide range of alternative reagents that hold potential for use in bimolecular functionalisation of proteins. Here, we report the synthesis and characterisation of metal ion binding chelates derivatised with disubstituted tetrazoles for the photoradiochemical labelling of monoclonal antibodies (mAbs). The photophysical properties of tetrazoles featuring extended aromatic systems and auxochromic substituents to tune excitation toward longer wavelengths (365 and 395 nm) were studied. Two photoactivatable chelates based on desferrioxamine B (DFO) and the aza-macrocycle NODAGA were functionalised with a tetrazole and developed for protein labelling with 89Zr, 64Cu and 68Ga radionuclides. DFO-tetrazole ( 1 ) was assessed by direct conjugation to formulated trastuzumab and subsequent radiolabelling with 89Zr. Radiochemical studies and cellular-based binding assays demonstrated that the radiotracer remained stable in vitro retained high immunoreactivity. Positron emission tomography (PET) imaging and biodistribution studies were used to measure the tumour specific uptake and pharmacokinetic profile in mice bearing SK-OV-3 xenografts. Experiments demonstrate that tetrazole-based photochemistry is a viable approach for the light-induced synthesis of PET radiotracers.  相似文献   

19.
Two novel methods for copper‐mediated aromatic nucleophilic radiofluorination were recently reported. Evaluation of these methods reveals that, although both are efficient in small‐scale experiments, they are inoperative for the production of positron emission tomography (PET) tracers. Since high base content turned out to be responsible for low radiochemical conversions, a “low base” protocol has been developed which affords 18F‐labeled arenes from diaryliodonium salts and aryl pinacol boronates in reasonable yields. Furthermore, implementation of our “minimalist” approach to the copper‐mediated [18F]‐fluorination of (mesityl)(aryl)iodonium salts allows the preparation of 18F‐labeled arenes in excellent RCCs. The novel radiofluorination method circumvents time‐consuming azeotropic drying and avoids the utilization of base and other additives, such as cryptands. Furthermore, this procedure enables the production of clinically relevant PET tracers; [18F]FDA, 4‐[18F]FPhe, and [18F]DAA1106 are obtained in good isolated radiochemical yields. Additionally, [18F]DAA1106 has been evaluated in a rat stroke model and demonstrates excellent potential for visualization of translocator protein 18 kDa overexpression associated with neuroinflammation after ischemic stroke.  相似文献   

20.
Herein, we report the development of an 18F‐labeled, activity‐based small‐molecule probe targeting the cancer‐associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile 18F radionuclide incorporation required for PET imaging. The resulting molecule, [18F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000‐fold selectivity relative to other serine hydrolases. [18F]JW199 displays rapid, NCEH1‐dependent accumulation in mouse tissues. Finally, we demonstrate that [18F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple‐negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号