首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we report a one‐electron strategy for catalytic amide synthesis that enables the direct carbamoylation of (hetero)aryl bromides. This radical cross‐coupling approach, which is based on the combination of nickel and photoredox catalysis, proceeds at ambient temperature and uses readily available dihydropyridines as precursors of carbamoyl radicals. The method's mild reaction conditions make it tolerant of sensitive‐functional‐group‐containing substrates and allow the installation of an amide scaffold within biologically relevant heterocycles. In addition, we installed amide functionalities bearing electron‐poor and sterically hindered amine moieties, which would be difficult to prepare with classical dehydrative condensation methods.  相似文献   

2.
Herein we report a facile, mild reaction protocol to form carbon–carbon bonds in the absence of transition metal catalysts. We demonstrate the metal‐free alkenylation reactions of aryl esters with α‐diazoesters to give highly functionalized enyne products. Catalytic amounts of tris(pentafluorophenyl)borane (10–20 mol %) are employed to afford the C=C coupled products (31 examples) in good to excellent yields (36–87 %). DFT studies were used to elucidate the mechanism for this alkenylation reaction.  相似文献   

3.
A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C?O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.  相似文献   

4.
In this Communication, we report an unprecedented β‐regioselective radical inverse hydroboration (compared with ionic hydroboration) of α,β‐unsaturated amides with NHC‐BH3 enabled by photoredox catalysis. Density functional theory (DFT) calculations show that the unique photoredox cycle is a key factor to control the β‐regioselective radical hydroboration, by lowering the energy barrier in comparison with other pathways. This protocol provides a general and convenient route to construct a wide range of structurally diverse β‐borylated amides in synthetically useful yields under mild conditions.  相似文献   

5.
Photoredox‐catalyzed reductive difluoromethylation of electron‐deficient alkenes was achieved in one step under tin‐free, mild and neutral conditions. This protocol affords a facile method to introduce RCF2 (R=H, Ph, Me, and CH2N3) groups at sites β to electron‐withdrawing groups. It was found that TTMS (tris(trimethylsilyl)silane) served nicely as both the H‐atom donor and the electron donor in the catalytic cycle. Experimental and DFT computational results provided evidence that RCF2 (R=H, Ph, Me) radicals are nucleophilic in nature.  相似文献   

6.
The free‐radical alkenylation of a range of alkyl iodides with a vinyldisulfones has been carried out, leading to the desired vinylsulfones in moderate to good yields under mild conditions. The process is initiated by an aryl radical which abstracts the iodine atom from the alkyl iodide to form a C‐centered radical intermediate, the addition of which onto the vinyldisulfone providing the final vinylsulfone. The aryl radical is generated in situ through a single‐electron transfer from an electron donor‐acceptor complex (EDA) formed between a diaryliodonium salt (Ph2I+ PF6?) and triethylamine.  相似文献   

7.
Photoredox‐catalyzed isomerization of γ‐carbonyl‐substituted allylic alcohols to their corresponding carbonyl compounds was achieved for the first time by C?H bond activation. This catalytic redox‐neutral process resulted in the synthesis of 1,4‐dicarbonyl compounds. Notably, allylic alcohols bearing tetrasubstituted olefins can also be transformed into their corresponding carbonyl compounds. Density functional theory calculations show that the carbonyl group at the γ‐position of allylic alcohols are beneficial to the formation of their corresponding allylic alcohol radicals with high vertical electron affinity, which contributes to the completion of the photoredox catalytic cycle.  相似文献   

8.
Unprotected thioglycosides were effective nucleophiles for Ni0‐catalyzed C? S bond‐forming reaction with functionalized (hetero)aryl, alkenyl, and alkynyl halides. The functional‐group tolerance on the electrophilic partner was typically high and the anomeric selectivities of the thioglycosides were high in all cases. The efficiency of this general procedure was well‐demonstrated by the synthesis of 4‐methyl‐7‐thioumbelliferyl‐β‐D ‐cellobioside (MUS‐CB).  相似文献   

9.
10.
A bimetallic RhII catalyst promoted the C? H alkenylation of simple arenes at 1.0 equivalent without the use of a directing group. A phosphine ligand as well as cooperative reoxidation of RhII with Cu(TFA)2 and V2O5 proved essential in providing monoalkenylated products in good yields and selectivities, especially with di‐ and trisubstituted arenes.  相似文献   

11.
Through the use of [Ru(bpy)3Cl2] (bpy=2,2′‐bipyridine) and [Ir(ppy)3] (ppy=phenylpyridine) as photocatalysts, we have achieved the first example of visible‐light photocatalytic radical alkenylation of various α‐carbonyl alkyl bromides and benzyl bromides to furnish α‐vinyl carbonyls and allylbenzene derivatives, prominent structural elements of many bioactive molecules. Specifically, this transformation is regiospecific and can tolerate primary, secondary, and even tertiary alkyl halides that bear β‐hydrides, which can be challenging with traditional palladium‐catalyzed approaches. The key initiation step of this transformation is visible‐light‐induced single‐electron reduction of C? Br bonds to generate alkyl radical species promoted by photocatalysts. The following carbon? carbon bond‐forming step involves a radical addition step rather than a metal‐mediated process, thereby avoiding the undesired β‐hydride elimination side reaction. Moreover, we propose that the Ru and Ir photocatalysts play a dual role in the catalytic system: they absorb energy from the visible light to facilitate the reaction process and act as a medium of electron transfer to activate the alkyl halides more effectively. Overall, this photoredox catalysis method opens new synthetic opportunities for the efficient alkenylation of alkyl halides that contain β‐hydrides under mild conditions.  相似文献   

12.
13.
A general and efficient palladium‐catalyzed direct C3 alkenylation of 4H‐pyrido[1,2‐a]pyrimidin‐4‐ones using AgOAc/O2 as the oxidant has been developed. A variety of 4H‐pyrido[1,2‐a]pyrimidin‐4‐ones were successfully coupled with acrylate esters, styrenes, methylvinylketone, and acrylamide in moderate to excellent yields. The reaction exhibited complete regio‐ and stereoselectivity. This transformation provides an attractive new approach to functionalize 4H‐pyrido[1,2‐a]pyrimidin‐4‐ones.  相似文献   

14.
A highly enantioselective rhodium(I)‐catalyzed dearomative arylation or alkenylation of easily available N‐alkylquinolinium salts is reported, thus providing an effective and practical approach to the synthesis of dihydroquinolines in up to 99 % ee. This reaction tolerates a wide range of functional groups with respect to both the organic boronic acids and the quinoline starting materials. Moreover, the synthetic utility of this protocol is demonstrated in the formal asymmetric synthesis of bioactive tetrahydroquinoline and the total syntheses of (?)‐angustureine and (+)‐cuspareine.  相似文献   

15.
16.
Sulfonylation of alkenes through photoredox‐catalyzed functionalization of alkenes with thiourea dioxide under visible‐light irradiation is achieved. The reaction of alkenes, thiourea dioxide and electrophiles provides a green and efficient access to alkyl sulfones and sulfonamides. A broad reaction scope is presented with good functional group compatibility and excellent regioselectivity. A plausible mechanism involving a radical addition process with sulfur dioxide radical anion (SO2) derived from the oxidation of sulfur dioxide anion (SO22–) is proposed, which is supported by fluorescence quenching experiments.  相似文献   

17.
Herein we report a highly selective photoredox C(sp3)?H alkylation/arylation of ethers through the combination of a photo‐organocatalyst (benzaldehyde) and a transition‐metal catalyst (nickel). This method provides a simple and general strategy for the C(sp3)?H alkylation/arylation of ethers. A selective late‐stage modification of (?)‐ambroxide has also been conducted to demonstrate the applicability of the method.  相似文献   

18.
Direct alkenylation of a variety of alcohols with vinylboronic acids has been accomplished using the air‐stable calcium(II) complex Ca(NTf2)2 under mild conditions with short reaction times. For reluctant transformations, an ammonium salt was used as an additive to circumvent the reactivity issue.  相似文献   

19.
An unprecedented Mn(I)‐catalyzed selective hydroarylation and hydroalkenylation of unsaturated amides with commercially available organic boronic acids is reported. Alkenyl boronic acids have been successfully employed for the first time in Mn(I)‐catalyzed carbon–carbon bond formation. A wide array of β‐alkenylated amide products can be obtained in moderate to good yields, which offers practical access to five‐ and six‐membered lactams. This protocol has predictable regio‐ and chemoselectivity, excellent functional group compatibility and ease of operation in air, representing a significant step‐forward towards manganese‐catalyzed C?C coupling.  相似文献   

20.
Photooxidation of alkanes by dioxygen occurred under visible light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) which acts as a super photooxidant. Solvent‐free hydroxylation of cyclohexane and alkanes is initiated by electron transfer from alkanes to the singlet and triplet excited states of DDQ to afford the corresponding radical cations and DDQ??, as revealed by femtosecond laser‐induced transient absorption measurements. Alkane radical cations readily deprotonate to produce alkyl radicals, which react with dioxygen to afford alkylperoxyl radicals. Alkylperoxyl radicals abstract hydrogen atoms from alkanes to yield alkyl hydroperoxides, accompanied by regeneration of alkyl radicals to constitute the radical chain reactions, so called autoxidation. The radical chain is terminated in the bimolecular reactions of alkylperoxyl radicals to yield the corresponding alcohols and ketones. DDQ??, produced by the photoinduced electron transfer from alkanes to the excited state of DDQ, disproportionates with protons to yield DDQH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号