首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
pH‐responsiveness has been widely pursued in dynamic DNA nanotechnology, owing to its potential in biosensing, controlled release, and nanomachinery. pH‐triggering systems mostly depend on specific designs of DNA sequences. However, sequence‐independent regulation could provide a more general tool to achieve pH‐responsive DNA assembly, which has yet to be developed. Herein, we propose a mechanism for dynamic DNA assembly by utilizing ethylenediamine (EN) as a reversibly chargeable (via protonation) molecule to overcome electrostatic repulsions. This strategy provides a universal pH‐responsivity for DNA assembly since the regulation originates from externally co‐existing EN rather than specific DNA sequences. Furthermore, it endows structural DNA nanotechnology with the benefits of a metal‐ion‐free environment including nuclease resistance. The concept could in principle be expanded to other organic molecules which may bring unique controls to dynamic DNA assembly.  相似文献   

3.
A series of novel pH‐ and temperature‐responsive diblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly[(L ‐glutamic acid)‐co‐(γ‐benzyl L ‐glutamate)] [P(GA‐co‐BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA‐co‐BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region. Notably, when the BLG content in P(GA‐co‐BLG) block was more than 30 mol.‐%, the diblock copolymer responded sharply to a narrow pH change in the region of pH 7.4–5.5.

  相似文献   


4.
We rationally engineered an elegant entropy‐driven DNA nanomachine with three‐dimensional track and applied it for intracellular miRNAs imaging. The proposed nanomachine is activated by target miRNA binding to drive a walking leg tethered to gold nanoparticle with a high density of DNA substrates. The autonomous and progressive walk on the DNA track via the entropy‐driven catalytic reaction of intramolecular toehold‐mediated strand migration leads to continuous disassembly of DNA substrates, accompanied by the recovery of fluorescence signal due to the specific release of a dye‐labeled substrate from DNA track. Our nanomachine outperforms the conventional intermolecular reaction‐based gold nanoparticle design in the context of an improved sensitivity and kinetics, attributed to the enhanced local effective concentrations of working DNA components from the proximity‐induced intramolecular reaction. Moreover, the nanomachine was applied for miRNA imaging inside living cells.  相似文献   

5.
Cofactors are pivotal compounds for the cell and many biotechnological processes. It is therefore interesting to ask how well cofactors can be bound by oligonucleotides designed not to convert but to store and release these biomolecules. Here we show that triplex‐based DNA binding motifs can be used to bind nucleotides and cofactors, including NADH, FAD, SAM, acetyl CoA, and tetrahydrofolate (THF). Dissociation constants between 0.1 μM for SAM and 35 μM for THF were measured. A two‐nucleotide gap still binds NADH. The selectivity for one ligand over the others can be changed by changing the sequence of the binding pocket. For example, a mismatch placed in one of the two triplets adjacent to the base‐pairing site changes the selectivity, favoring the binding of FAD over that of ATP. Further, changing one of the two thymines of an A‐binding motif to cytosine gives significant affinity for G, whereas changing the other does not. Immobilization of DNA motifs gives beads that store NADH. Exploratory experiments show that the beads release the cofactor upon warming to body temperature.  相似文献   

6.
In many biomedical applications, drugs need to be delivered in response to the pH value in the body. In fact, it is desirable if the drugs can be administered in a controlled manner that precisely matches physiological needs at targeted sites and at predetermined release rates for predefined periods of time. Different organs, tissues, and cellular compartments have different pH values, which makes the pH value a suitable stimulus for controlled drug release. pH‐Responsive drug‐delivery systems have attracted more and more interest as “smart” drug‐delivery systems for overcoming the shortcomings of conventional drug formulations because they are able to deliver drugs in a controlled manner at a specific site and time, which results in high therapeutic efficacy. This focus review is not intended to offer a comprehensive review on the research devoted to pH‐responsive drug‐delivery systems; instead, it presents some recent progress obtained for pH‐responsive drug‐delivery systems and future perspectives. There are a large number of publications available on this topic, but only a selection of examples will be discussed.  相似文献   

7.
8.
9.
10.
11.
The first example of amphiphilic glyco‐homopolymers is reported and their aggregation properties as a function of solution pH are studied. Two structurally similar polymers with different hydrophobicity (C8 and C6 alkyl chains) are examined. Both polymers form micelle‐type aggregates in aqueous solution. The size and micro‐environment of the aggregates are found to be strongly dependent on solution pH because of the state of protonation of the tertiary amine group. At acidic pH, swollen multi‐micellar aggregates are formed, presumably because of the electrostatic repulsion among the ammonium ions. At basic pH more compact particles are found, which further co‐assemble to generate either garland type (C8) or fractal‐aggregates (C6).  相似文献   

12.
13.
We report core@satellite Janus mesoporous silica‐Pt@Au (JMPA) nanomotors with pH‐responsive multi‐phoretic propulsion. The JMPA nanomotors first undergo self‐diffusiophoretic propulsion in 3.0 % H2O2 due to the isolation of the Au nanoparticles (AuNPs) from the PtNPs layer. Then the weak acidity of H2O2 can trigger the disassembly and reassembly of the AuNPs, resulting in the Janus distribution of large AuNPs aggregates. Such reconstruction of JMPA leads to the contact between PtNPs and AuNPs aggregates, thus changing the propulsion mechanism to self‐electrophoresis. The asymmetric and aggregated AuNPs also enable the generation of a thermal gradient under laser irradiation, which propels the JMPA nanomotors by self‐thermophoresis. Such multi‐phoretic propulsion offers considerable promise for developing advanced nanomachines with a stimuli‐responsive switch of propulsion modes in biomedical applications.  相似文献   

14.
We show herein that allostery offers a key strategy for the design of out‐of‐equilibrium systems by engineering allosteric DNA‐based nanodevices for the transient loading and release of small organic molecules. To demonstrate the generality of our approach, we used two model DNA‐based aptamers that bind ATP and cocaine through a target‐induced conformational change. We re‐engineered these aptamers so that their affinity towards their specific target is controlled by a DNA sequence acting as an allosteric inhibitor. The use of an enzyme that specifically cleaves the inhibitor only when it is bound to the aptamer generates a transient allosteric control that leads to the release of ATP or cocaine from the aptamers. Our approach confirms that the programmability and predictability of nucleic acids make synthetic DNA/RNA the perfect candidate material to re‐engineer synthetic receptors that can undergo chemical fuel‐triggered release of small‐molecule cargoes and to rationally design non‐equilibrium systems.  相似文献   

15.
16.
Bio‐inspired functional microcapsules have attracted increasing attention in many fields from physical/chemical science to artificial‐cell engineering. Although particle‐stabilised microcapsules are advantageous for their stability and functionalisation potential, versatile methods for their functionalisation are desired to expand their possibilities. This study reports a water‐in‐oil microdroplet stabilised with amphiphilic DNA origami nanoplates. By utilising DNA nanotechnology, DNA nanoplates were designed as a nanopore device for ion transportation and to stabilise the oil–water interface. Microscopic examination revealed the microcapsule formed by the accumulation of amphiphilic DNA nanoplates at the oil–water interface. Ion current measurements revealed the nanoplate pores functioned as channel to transport ions. These findings provide a general strategy for the programmable design of microcapsules to engineer artificial cells and molecular robots.  相似文献   

17.
We report the first in vitro selection of DNA nanostructures that switch their conformation when triggered by change in pH. Previously, most pH‐active nanostructures were designed using known pH‐active motifs, such as the i‐motif or the triplex structure. In contrast, we performed de novo selections starting from a random library and generated nanostructures that can sequester and release Mipomersen, a clinically approved antisense DNA drug, in response to pH change. We demonstrate extraordinary pH‐selectivity, releasing up to 714‐fold more Mipomersen at pH 5.2 compared to pH 7.5. Interestingly, none of our nanostructures showed significant sequence similarity to known pH‐sensitive motifs, suggesting that they may operate via novel structure‐switching mechanisms. We believe our selection scheme is general and could be adopted for generating DNA nanostructures for many applications including drug delivery, sensors and pH‐active surfaces.  相似文献   

18.
The targeted delivery of chemotherapeutic drugs is a major challenge in the clinical treatment of cancer. Herein, we constructed a multifunctional DNA nanoplatform as a versatile carrier of the highly potent platinum‐based DNA intercalator, 56MESS. In our rational design, 56MESS was efficiently loaded into the double‐bundle DNA tetrahedron through intercalation with the DNA duplex. With the integration of a nanobody that both targets and blocks epidermal growth factor receptor (EGFR), the DNA nanocarriers exhibit excellent selectivity for cells with elevated EGFR expression (a common biomarker related to tumor formation) and combined tumor therapy without obvious systemic toxicity. This DNA‐based platinum‐drug delivery system provides a promising strategy for the treatment of tumors.  相似文献   

19.
A general approach is reported for the design of small‐molecule competitive inhibitors of lysosomal glycosidases programmed to 1) promote correct folding of mutant enzymes at the endoplasmic reticulum, 2) facilitate trafficking, and 3) undergo dissociation and self‐inactivation at the lysosome. The strategy is based on the incorporation of an orthoester segment into iminosugar conjugates to switch the nature of the aglycone moiety from hydrophobic to hydrophilic in the pH 7 to pH 5 window, which has a dramatic effect on the enzyme binding affinity. As a proof of concept, new highly pH‐responsive glycomimetics targeting human glucocerebrosidase or α‐galactosidase with strong potential as pharmacological chaperones for Gaucher or Fabry disease, respectively, were developed.  相似文献   

20.
Autofluorescent microcapsules were assembled by covalent cross‐linking of polysaccharide alginate dialdehyde (ADA) derivative and cystamine dihydrochloride (CM) through a layer‐by‐layer (LBL) technique. The formulated Schiff base and disulfide bonds render capsules with pH‐ and redox‐responsive properties for pinpointed intracellular delivery based on the physiological difference between intracellular and extracellular environments. This simple and versatile method could be extended to other polysaccharide derivatives for the fabrication of autofluorescent nano‐ and micromaterials with dual stimuli response for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号