首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, a simple, rapid and reliable ultrahigh‐performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated to determine simultaneously epalrestat (EPA) and puerarin (PUE) in rat plasma for evaluation of the pharmacokinetic interaction of these two drugs. Both the analytes and glipizide (internal standard, IS) were extracted using a protein precipitation method. The separation was performed on a C18 reversed phase column using acetonitrile and 5 mmol/L ammonium acetate in water as the mobile phase with a gradient elution program. The analytes, including IS, were quantified with multiple reaction monitoring under negative ionization mode. The optimized mass transition ion pairs (m /z ) were 318.1 → 274.0 for EPA, 415.1 → 266.9 for PUE and 444.2 → 166.9 for IS. The linear calibration curves for EPA and PUE were obtained in the concentration ranges of 10–4167 and 20–8333 ng/mL, respectively (r > 0.99). The current method was successfully applied for the pharmacokinetic interaction study in rats following administration of EPA and PUE alone or co‐administration (EPA 15 mg/kg, oral; PUE 30 mg/kg, intravenous). The results showed that the combination of EPA and PUE could increase t 1/2 of EPA and reduce T max of EPA. These changes indicated that EPA and PUE might cause drug–drug interactions when co‐administrated.  相似文献   

2.
A sensitive HPLC method based on post-column modification and fluorescence detection has been developed for determination of puerarin and daidzein in rat plasma. Chromatographic separation was performed on a C8 column with a linear gradient prepared from 0.5% aqueous acetic acid and 0.5% acetic acid in acetonitrile, delivered at a flow rate of 0.8 mL min−1. Naringin was used as the internal standard. It was necessary to use acetic acid in the mobile phase to achieve good separation, but this led to fluorescence signal suppression, because puerarin and daidzein have native fluorescence at pH 8.0–9.0. To enhance the sensitivity, post-column modification with alkaline buffer was adopted. After this modification, detection sensitivity for puerarin and daizein increased more than 500-fold and 600-fold, respectively, compared with direct fluorescence detection. Signal-to-noise ratios for detection for puerarin were more than 150 times better than for UV detection after use of the same method of sample preparation. This sensitive analytical method was successfully used to determine pharmacokinetic data for puerarin and daidzein in rat plasma after oral administration of a single dose of Puerariae radix extract containing puerarin (approx. 8.4 mg) and daizein (approx. 5.9 mg) to male SD rats.  相似文献   

3.
Lizhong decoction (LZD), a classic formula, has been used to treat ulcerative colitis (UC) for thousands of years in clinical practice. However, the pharmacokinetic characteristics of its major bioactive components in rats under different physiological and pathological states are not clear. Thus, in this study, a rapid and sensitive analytical method, ultra‐performance liquid chromatography coupled with mass spectrometry (UPLC–MS/MS) method, was developed and applied to simultaneously determine glycyrrhizic acid, liquiritin, isoliquiritin, glycyrrhizin, isoliquiritigenin, 6‐gingerol, ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Re in normal and UC rats after oral administration of LZD extract. A Waters BEH C18 UPLC column was used for chromatographic separation, while acetonitrile and 0.1% formic acid were selected as mobile phase. The linearity of nine analytes was >0.9920. Inter‐ and intra‐day accuracy was ≤ 11.4% and precision was from 1.1 to 12.7%. Additionally, stable and suitable extraction recoveries were also obtained. The established method was validated and found to be specific, accurate and precise for nine analytes. Furthermore, it was successfully applied to the pharmacokinetic investigation of nine major components after oral administration of LZD extracts to normal and model rats, respectively. The results showed that the pharmacokinetic parameters (Cmax, Tmax, AUC0–t, AUC0–∞) in the plasma of UC rats were significantly different from those of normal rats, which could provide a reference for the clinical application of LZD.  相似文献   

4.
A sensitive and reliable liquid chromatography–mass spectrometry method has been developed and validated for simultaneous determination of cimifugin and prim‐O‐glucosylcimifugin in rat plasma after oral administration of Radix Saposhnikoviae (RS) extract, prim‐O‐glucosylcimifugin monomer solution and cimifugin monomer solution. Plasma samples were pretreated by protein precipitation with acetonitrile containing the internal standards puerarin and daidzein. LC separation was achieved on a Zorbax SB‐C18 column (150 × 4.6 mm i.d., 5 µm) with 0.1% formic acid in water and methanol by isocratic elution. The detection was carried out in select‐ion‐monitoring mode with a positive electrospray ionization interface. The fully validated method was successfully applied to the pharmacokinetic study of the analytes in rats. A bimodal phenomenon appeared in the concentration–time curve of prim‐O‐glucosylcimifugin and cimifugin after oral administration of RS extract. Prim‐O‐glucosylcimifugin mainly transformed to cimifugin when it was absorbed into blood. Both absorption and elimination of cimifugin after oral administration of RS were longer than after administration of single cimifugin. The pharmacokinetic parameters (AUC0–t, AUC0–∞ and t1/2) of prim‐O‐glucosylcimifugin and cimifugin by giving cimifugin monomer solution, prim‐O‐glucosylcimifugin monomer solution and RS extract had significant differences (P < 0.05). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A specific, sensitive and accurate analytical LC‐MS/MS assay was developed for the simultaneous determination of two steroidal glycosides, tenacissoside H and tenacissoside I, in rat plasma. An Agilent ZORBAX SB‐C18 column was used with an isocratic mobile phase system composed of methanol–water–formic acid (70:30:0.1, v/v/v) at a flow rate of 0.3 mL/min. The analysis was performed on a positive ionization electrospray mass spectrometer via selected reaction monitoring mode scan. One‐step protein precipitation with acetonitrile was chosen to extract the analytes from plasma. The lower limits of quantification were 0.9 ng/mL for tenacissoside H and tenacissoside I. The intra‐ and inter‐day precisions were 2.03–11.56 and 3.76–11.62%, respectively, and the accuracies were <110.28% at all quality control levels. The validated method was applied to a pharmacokinetic study in rats after oral gavage of Marsdenia tenacissima extract. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A specific and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the analysis of glaucocalyxin A and glaucocalyxin B in rat plasma using praeruptorin A as an internal standard. Separation was performed on a Hypurity C18 column (2.1 × 50 mm, 5 μm) with isocratic elution using 0.2% formic acid in water–acetonitrile (20:80, v/v). Mass spectrometric detection was conducted using selected reaction monitoring via an electrospray ionization source. Both analytes exhibited good linearity within their concentration ranges (r2 > 0.9932). The lower limit of quantitation of glaucocalyxin A and glaucocalyxin B was 1.10 ng/mL. Intra‐ and inter‐day precision exhibited an RSD within 14.5%, and the accuracy (RE) ranged from –12.1 to 15.0% at the lower limit of quantitation and three quality control levels. The developed assay was successfully applied to a pharmacokinetic study of glaucocalyxin A and glaucocalyxin B in rats after oral administration of Rabdosia japonica extract.  相似文献   

7.
A sensitive and reliable LC–MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi–Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin‐7‐O‐β‐d ‐glucoside (CAG), calycosin, calycosin‐3′‐O‐glucuronide (C‐3′‐G) and calycosin‐3′‐O‐sulfate (C‐3′‐S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra‐ and inter‐assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from ?8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S in rat after an oral administration of Huangqi–Honghua extract.  相似文献   

8.
In Hedera helix hederacoside C, hederacoside D, and ɑ‐hederin are three major bioactive saponins and play pivotal roles in the overall biological activity. In this study, a specific and sensitive ultra‐high performance liquid chromatography with tandem mass spectrometry method has been developed and validated for the quantification of three major bioactive saponins in rat plasma. Chromatographic separation was performed on a reversed‐phase Thermo Hypersil GOLD C18 column (2.1 mm × 50 mm, 1.9 μm) using a gradient mobile phase system of acetonitrile‐water containing 0.1% formic acid. The assay was successfully applied to study the pharmacokinetic behavior of the three analytes in rats after oral and intravenous administration of a mixture of saponins (hederacoside C, hederacoside D, and ɑ‐hederin). Further research was performed to compare the pharmacokinetic behavior of the three analytes after the oral administration of a mixture of saponins and an extract of saponins from Hedera helix, and results showed that double peaks were evident on concentration–time profile for each of the three saponins. The difference in the pharmacokinetic characteristics of three saponins between a mixture of saponins and an extract of saponins from Hedera helix was found in rat, which would be beneficial for the preclinical research and clinical use of Hedera helix.  相似文献   

9.
A selective and sensitive HPLC–MS/MS method was developed for the simultaneous determination of cucurbitacin IIa (cuIIa) and cucurbitacin IIb (cuIIb), the major bioactive cucurbitacins of Hemsleya amabilis, in rat plasma using euphadienol as internal standard (IS). After liquid–liquid extraction with dichloromethane, separation was achieved on a Syncronis HPLC C18 column (150 mm × 4.6 mm, 5 μm) using an isocratic mobile phase system consisting of acetonitrile–water (85:15, v/v) at a flow rate of 0.6 mL/min with a split ratio of 1:2. Detection was performed on a TSQ Quantum Ultra mass spectrometer equipped with an positive‐ion electrospray ionization source. The lower limits of quantification (LLOQs) were 0.25 and 0.15 ng/mL for cuIIa and cuIIb, respectively. The intra‐ and inter‐day precision was <11.5% for the LLOQs and each quality control level of the analytes, and accuracy was between ?9.1 and 7.6%. The extraction recoveries of the analytes and IS from rat plasma were all >87.1%. The method was fully validated and applied to compare the pharmacokinetic profiles of the two cucurbitacins in rat plasma after oral administration of H. amabilis extract between normal and indomethacin‐induced rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid and sensitive liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous determination of luteolin, luteolin‐7‐O β ‐D‐glucopyranoside, physalin A, physalin D and physalin L in rat plasma. Scutellarein and dexamethasone were used as the internal standards (IS). Plasma samples were prepared by liquid‐liquid extraction with ethyl acetate. The five constituents were separated on an Acquity UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 μm). A gradient elution procedure was used with acetonitrile (A)‐0.1% aqueous formic acid (B). Mass spectrometric detection was performed in negative ion multiple reaction monitoring mode with an electrospray ionization (ESI) source. This method showed good linearity (r 2 > 0.997) over a concentration range of 2.0–500 ng/mL with a lower limit of quantification of 2.0 ng/mL for all five compounds. The inter‐ and intra‐day accuracy ranged from 91.7 to 104%, and precisions (RSD) were <6.46% for all analytes. The extraction recoveries of all analytes were >85%. This validated method was successfully applied for the first time to the pharmacokinetic study of five ingredients after oral administration of 70% ethanol extract of Chinese lantern in rats.  相似文献   

11.
A simple, sensitive and rapid method for analysis of six lignans in rat plasma after oral administration of Schisandra chinensis extracts, utilizing liquid chromatography tandem mass spectrometry (LC‐MS), was established and validated. Plasma samples were prepared by one‐step protein precipitation using acetonitrile and the analytes were separated on an SB‐C18 column (100 mm × 3.0 mm, 3.5 µm) with the mobile phase of acetonitrile–water at a flow‐rate of 0.8 mL/min. Analytes were determined in a single‐quadrupole mass spectrometer in the selected ion monitoring (SIM) mode using electrospray source with positive mode. The method was proved to be rapid, sensitive and reproducible, and it was successfully applied to the pharmacokinetic studies of six lignans in rat plasma after oral administration of Schisandra chinensis extracts. In this research, the pharmacokinetics of deoxyschisandrin was also studied following oral administration of the pure deoxyschisandrin. It was found that most of the pharmacokinetic parameters of deoxyschisandrin in the extract were changed significantly compared with those in monomer. The content assay also revealed that the concentrations of the lignan in the extract increased in vivo compared with the pure monomer. Some ingredients in the extract may increase the dissolution of deoxyschisandrin, delay its elimination and enhance its bioavailability in rat. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive and validated method of liquid chromatography–tandem mass spectrometry (LC–MS/MS) was established to test the plasma concentrations of active ingredients in Qinxing Qingre Zhike Granule, namely geniposide, liquiritin, isoliquiritin, baicalin, wogonoside, baicalein, liquiritigenin, isoliquiritigenin and glycyrrhetinic acid. The analysis was performed on an Ultimate XB‐C18 column at the flow rate of 0.4 mL min?1 in a single run of 18 min. The mobile phase was composed of 0.05% formic acid in water and acetonitrile with gradient elution. Positive and negative scanning and selected multiple reaction monitoring modes were applied for quantization. The proposed method showed good linearity in the given ranges from 0.6800–340.0 to 3.920–1960 ng mL?1 with r2 > 0.9917 for all the analytes. The precision (RSD) was no more than 12%, and the accuracy (RE) was less than ±11% for intra‐ and inter‐day. The extract recovery and matrix effect were acceptable for the requirements of biological sample analysis. Moreover, the developed method was effectively applied to the pharmacokinetic investigation of Qinxing Qingre Zhike Granule after oral administration in rats.  相似文献   

13.
The purpose of this study is to establish and validate a UPLC–MS/MS approach to determine eight flavonoids in biological samples and apply the method to pharmacokinetic study of Fu‐Zhu‐Jiang‐Tang tablet. A Waters BEH C18 UPLC column was employed with methanol/0.1% formic acid–water as mobile phases. The mass analysis was carried out in a triple quadrupole mass spectrometer using multiple reaction monitoring with negative scan mode. A one‐step protein precipitation by methanol was used to extract the analytes from blood. Eight major flavonoids were selected as markers. Our results showed that calibration curves for 3′‐hydroxypuerarin, mirificin, puerarin, 3′‐methoxypuerarin, daidzin, rutin, astragalin and daidzein displayed good linear regression (r 2 > 0.9986). The intra‐day and inter‐day precisions (RSD) of the eight flavonoids at high, medium and low levels were <8.03% and the bias of the accuracies ranged from −5.20 to 6.75%.The extraction recoveries of the eight flavonoids were from 91.4 to 100.5% and the matrix effects ranged from 89.8 to 103.8%. The validated approach was successfully applied to a pharmacokinetic study in Sprague–Dawley rats after oral administration of FZJT tablet. Double peaks were emerged in curves of mean plasma concentration for 3′‐methoxypuerarin, which was reported for the first time.  相似文献   

14.
A sensitive and rapid LC‐MS/MS method was developed and validated for the determination of kadsurenone in rat plasma using lysionotin as the internal standard (IS). The analytes were extracted from rat plasma with acetonitrile and separated on a SB‐C18 column (50 × 2.1 mm, i.d.; 1.8 µm) at 30 °C. Elution was achieved with a mobile phase consisting of methanol–water–formic acid (65:35:0.1, v/v/v) at a flow rate of 0.30 mL/min. Detection and quantification for analytes were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 357.1 → 178.1 for kadsurenone, and m/z 345.1 → 315.1 for IS. Calibration curves were linear over a concentration range of 4.88–1464 ng/mL with a lower limit of quantification of 4.88 ng/mL. The intra‐ and inter‐day accuracies and precisions were <8.9%. The LC‐MS/MS assay was successfully applied for oral pharmacokinetic evaluation of kadsurenone using the rat as an animal model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A simple and sensitive ultra-high performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated for the determination of ARQ531, a Bruton’s tyrosine kinase inhibitor in rat plasma. After protein precipitation with acetonitrile, the samples were separated on a UPLC BEH C18 column with 0.1% formic acid in water and acetonitrile as mobile phase at a flow rate of 0.4 ml/min. The mass detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring with precursor-to-product ion transitions of m/z 479.1 > 365.1 and m/z 441.2 > 138.1 for ARQ531 and internal standard, respectively. Good linearity (correlation coefficient > 0.9988) was achieved over the concentration range of 0.5–1,000 ng/ml and the lower limit of quantitation was 0.5 ng/ml. The accuracy ranged from −13.50 to 11.35% and the precision was <8.87%. The extraction recovery was >85.56%. ARQ531 was demonstrated to be stable under the tested conditions. The validated method was further applied to a pharmacokinetic study of ARQ531 in rats after intravenous (1 mg/kg) and oral (1, 3 and 10 mg/kg) administration. The results demonstrated that ARQ531 displayed linear pharmacokinetic profiles over the oral dose range of 1–10 mg/kg and good oral bioavailability (>50%).  相似文献   

17.
An accurate, rapid, and reliable ultra high performance liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of baicalin, wogonoside, baicalein, wogonin, and oroxylin A in rat plasma. Then, the stability of baicalin and baicalein in the preparation of plasma sample was systematically investigated. The Waters BEH C18 column was used with a gradient mobile phase system of acetonitrile and water containing 0.1% formic acid. The analytes were detected in the multiple reaction monitoring mode with positive electrospray ionization. 100 μL fresh plasma was added with 50 μL antioxidant reagent (1 mol/L HCl containing 0.5% Vitamin C), and liquid–liquid extraction with ethyl acetate was used to extract the analytes from plasma. Lower limits of quantification of baicalin, wogonoside, baicalein, wogonin, and oroxylin A were 21.9, 4.80, 1.20, 0.848, and 0.800 ng/mL, respectively. The mean extract recoveries of five flavonoids were 69.1∼89.2%, and the precision and accuracy were within the acceptable limits. This method was further successfully applied to the comparative pharmacokinetic study of these five flavonoids in rats after oral administration of Xiaochaihutang and three compatibilities. The obtained results may be helpful to reveal the mechanism of Xiaochaihutang formula compatibility.  相似文献   

18.
Morinda officinalis is a famous traditional Chinese medicine containing iridoid glycoside compounds, such as monotropein and deacetylasperulosidic acid. The aim of the study was to develop a novel and sensitive liquid chromatography–tandem mass spectrometry (LC/MS/MS) method for the simultaneous determination of the two isomeric iridoid glycosides and then evaluate their pharmacokinetic properties in rats. Selected‐reaction monitoring mode was employed for quantification of two analytes in rat plasma. The calibration curves were linear over their respective concentration range with correlation coefficient >0.995 for both analytes. Precision for monotropein and deacetylasperulosidic acid ranged from 2.5 to 11.9% relative standard deviation, and the accuracy of two analytes was ?2.0–3.7 and ?6.4–10.7% relative error, respectively. This method was successfully applied in pharmacokinetic study after oral administration of M. officinalis extract in rats. The results provided a basis for further research on the bioactivity of M. officinalis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N ‐oxidated metabolite (PQ‐M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple‐quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0–400.0 ng/mL for PQ and 1.0–50.0 ng/mL for PQ‐M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ‐M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co‐administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ‐M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).  相似文献   

20.
With the purpose of carrying out pharmacokinetic interaction studies ofnberberine (BBR) and fenofibrate (FBT), an UPLC‐MS/MS method has been developed and validated. The analytes, BBR and fenofibric acid (FBA, metabolite of FBT) and the internal standard, tetrahydropalmatine, were extracted with dichloromethane–diethyl ether (3:2, v/v) and separated on an Agilent Eclipse XDB C18 column using a mobile phase composed of acetonitrile and water. With positive ion electrospray ionization, the analytes were monitored on a triple quadrupole mass spectrometer in multiple reaction monitoring mode. Linear calibration curves were obtained over the concentration ranges of 0.1–100.0 ng/mL for BBR and 10.0–50,000.0 ng/mL for FBA. For BBR and FBA, the intra‐ and inter‐day precisions were <11.5 and 11.9%, respectively. The accuracy was within 11.7% and 11.3%. The mean recoveries of BBR at three concentrations of 0.2, 20.0, 80.0 ng/mL were >85.6%, and those of FBA at three concentrations of 20.0, 2500.0, 40,000.0 ng/mL were >87.9%. Consequently, the proposed method was applied to the pharmacokinetic interaction study of FBT combined with BBR after oral administration in rats and was proved to be sensitive, specific and reliable to analyze BBR and FBA in biological samples simultaneously. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号