首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An o‐anisidine‐Pd(OAc)2 catalytic system for the direct co‐catalytic Saegusa oxidation of β‐aryl substituted aldehydes to α,β‐unsaturated aldehydes has been developed. The use of o‐anisidine in place of (S)‐diphenylprolinol made the process more simply and cost‐effective. The process not only features the use of unmodified aldehydes rather than enol silyl ethers, but also gives moderate to good yields (44–72 %).  相似文献   

2.
黄志真  孙若君 《中国化学》2002,20(11):1460-1462
Sinceitsdiscovery ,Wittigreactionhasbecomeoneofprimarymethodsfortheformationofcarbon carbondoublebondsandbeenwidelyusedinthesynthesisofnaturalproducts .1,2 Recently ,itwasfoundthatprimaryalcoholscanundergothetandemreactionofoxidation Wittigreactionwithphos…  相似文献   

3.
We report a reaction platform for the synthesis of three different high‐value specialty chemical building blocks starting from bio‐ethanol, which might have an important impact in the implementation of biorefineries. First, oxidative dehydrogenation of ethanol to acetaldehyde generates an aldehyde‐containing stream active for the production of C4 aldehydes via base‐catalyzed aldol‐condensation. Then, the resulting C4 adduct is selectively converted into crotonic acid via catalytic aerobic oxidation (62 % yield). Using a sequential epoxidation and hydrogenation of crotonic acid leads to 29 % yield of β‐hydroxy acid (3‐hydroxybutanoic acid). By controlling the pH of the reaction media, it is possible to hydrolyze the oxirane moiety leading to 21 % yield of α,β‐dihydroxy acid (2,3‐dihydroxybutanoic acid). Crotonic acid, 3‐hydroxybutanoic acid, and 2,3‐dihydroxybutanoic acid are archetypal specialty chemicals used in the synthesis of polyvinyl‐co‐unsaturated acids resins, pharmaceutics, and bio‐degradable/ ‐compatible polymers, respectively.  相似文献   

4.
5.
Conjugated N‐acyl pyrazoles have been successfully employed in the organocatalytic enantioselective intramolecular aza‐Michael reaction as ester surrogates. Bifunctional squaramides under microwave irradiation provided the best results in this transformation. Furthermore, this protocol has been combined with a peptide‐coupling reaction in a tandem sequence. The final products were easily converted into the corresponding ethyl esters.  相似文献   

6.
7.
Mechanistic studies on the organocatalytic epoxidation of α,β‐unsaturated aldehydes explore the autoinductive behavior of the reaction and establish that the hydrate/peroxyhydrate of the product is acting as a phase‐transfer catalyst. Based on these studies, an improved methodology that provides high selectivities and decreased catalyst loading, through the addition of chloral hydrate, is developed.  相似文献   

8.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A novel, N‐heterocyclic carbene (NHC) catalyzed direct oxidative coupling of styrenes with aldehydes has been described for the synthesis of α,β‐epoxy ketones in good yields. This unprecedented regioselective oxidative coupling employs NBS/DBU/DMSO (DBU=1,8‐diazabicyclo [5.4. 0] undec‐7‐ene, DMSO=dimethylsulfoxide, NBS=N‐bromosuccinimide) as an oxidative system at ambient conditions. Additionally, first NHC‐catalyzed Darzens reaction of α‐bromoketones and aldehydes under mild reaction conditions has also been described. Interestingly, mechanistic studies have revealed the preferred reactivity of NHC with alkene/α‐bromoketone rather than aldehydes, thus proceeding via the ketodeoxy Breslow intermediate.  相似文献   

10.
An aldehyde‐selective Wacker‐type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β‐fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity. Additionally, the unpurified aldehyde products serve as versatile intermediates, thus enabling access to a diverse array of fluorinated building blocks. Preliminary mechanistic investigations suggest that inductive effects have a strong influence on the rate and regioselectivity of the oxidation.  相似文献   

11.
12.
The site‐selective palladium‐catalyzed three‐component coupling of deactivated alkenes, arylboronic acids, and N‐fluorobenzenesulfonimide is disclosed herein. The developed methodology establishes a general, modular, and step‐economical approach to the stereoselective β‐fluorination of α,β‐unsaturated systems.  相似文献   

13.
A de novo tandem benzylic oxidative dihydroxylation of α‐vinyl‐ and α‐alkenylbenzyl alcohols has been developed to give α,β‐dihydroxypropiophenones (=2,3‐dihydroxy‐1‐phenylpropan‐1‐ones) and α,β‐dihydroxyalkyl phenones. This method was shown to be substrate‐selective and specific for the oxidation of benzylic alcohols.  相似文献   

14.
15.
16.
17.
A new cascade pathway viable for Knoevenagel chemistry that involves the coupling between 1,3‐dicarbonyl systems and α,β,γ,δ‐unsaturated aldehydes has been developed. The process comprises the combination of a classic aldol‐type condensation and a rare spontaneous metal‐free cycloisomerization, representing a convergent and innovative approach for the stereoselective synthesis of cyclopenta[b]furan‐type derivatives. The scope and limitations with respect to both reaction partners and mechanistic features were investigated. Meaningfully, our study provides valuable guidance concerning the structural and electronic effects controlling the reactivity of conjugated polyene carbonyl systems.  相似文献   

18.
19.
20.
An easily available and efficient chiral N,N′‐dioxide–nickel(II) complex catalyst has been developed for the direct catalytic asymmetric aldol reaction of α‐isothiocyanato imide with aldehydes which produces the products in morderate to high yields (up to 98 %) with excellent diastereo‐ (up to >99:1 d.r.) and enantioselectivities (up to >99 % ee). A variety of aromatic, heteroaromatic, α,β‐unsaturated, and aliphatic aldehydes were found to be suitable substrates in the presence of 2.5 mol % L ‐proline‐derived N,Ndioxide L5 –nickel(II) complex. This process was air‐tolerant and easily manipulated with available reagents. Based on experimental investigations, a possible transition state has been proposed to explain the origin of reactivity and asymmetric inductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号