首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wavelet bi‐frames with uniform symmetry are discussed in this paper. Every refinable function in the bi‐frame system is symmetric, which is very useful in the image processing and curve and surface multiresolution processing. By the aid of the lifting scheme, bi‐frame multiresolution algorithms can be divided into several iterative steps, and each step can be shown by a symmetric template. The template‐based procedure is established for constructing bi‐frames with uniform symmetry and N > 2 generators. In particular, we take the bi‐frame with three generators as an example to provide a clearer picture of the template‐based procedure for constructing bi‐frames. Three types of bi‐frames with three generators are studied, and some examples with certain smoothness are constructed. These examples include some bi‐frames with interpolating property. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easy-to-use construction method for multivariate refinable Hermite interpolants. Using this method, several new refinable Hermite interpolants with respect to different dilation matrices and symmetry groups are constructed and analyzed.

Some of the Hermite interpolants constructed here are related to well-known spline interpolation schemes developed in the computer-aided geometric design community (e.g., the Powell-Sabin scheme). We make some of these connections precise. A spline connection allows us to determine critical Hölder regularity in a trivial way (as opposed to the case of general refinable functions, whose critical Hölder regularity exponents are often difficult to compute).

While it is often mentioned in published articles that ``refinable functions are important for subdivision surfaces in CAGD applications", it is rather unclear whether an arbitrary refinable function vector can be meaningfully applied to build free-form subdivision surfaces. The bivariate symmetric refinable Hermite interpolants constructed in this article, along with algorithmic developments elsewhere, give an application of vector refinability to subdivision surfaces. We briefly discuss several potential advantages offered by such Hermite subdivision surfaces.

  相似文献   


3.
Ternary subdivision schemes compare favorably with their binary analogues because they are able to generate limit functions with the same (or higher) smoothness but smaller support.In this work we consider the two issues of local tension control and conics reproduction in univariate interpolating ternary refinements. We show that both these features can be included in a unique interpolating 4-point subdivision method by means of non-stationary insertion rules that do not affect the improved smoothness and locality of ternary schemes. This is realized by exploiting local shape parameters associated with the initial polyline edges.  相似文献   

4.
We analyze the properties of a new class of totally positive refinable functions obtained from nonstationary subdivision schemes. We show that the corresponding system of the integer translates is linearly independent, satisfies a Whitney–Schoenberg condition, reproduces polynomials up to a certain degree and generates a multiresolution analysis. Finally, pre-wavelets and bases on the interval are constructed.  相似文献   

5.
In this paper we investigate the construction of dyadic affine (wavelet) bi-frames for triangular-mesh surface multiresolution processing. We introduce 6-fold symmetric bi-frames with 4 framelets (frame generators). 6-fold symmetric bi-frames yield frame decomposition and reconstruction algorithms (for regular vertices) with high symmetry, which is required for the design of the corresponding frame multiresolution algorithms for extraordinary vertices on the triangular mesh. Compared with biorthogonal wavelets, the constructed bi-frames have better smoothness and smaller supports. In addition, we also provide frame multiresolution algorithms for extraordinary vertices. All the frame algorithms considered in this paper are given by templates (stencils) so that they are implementable. Furthermore, we present some preliminary experimental results on surface processing with frame algorithms constructed in this paper.  相似文献   

6.
When bivariate filter banks and wavelets are used for surface multiresolution processing, it is required that the decomposition and reconstruction algorithms for regular vertices derived from them have high symmetry. This symmetry requirement makes it possible to design the corresponding multiresolution algorithms for extraordinary vertices. Recently lifting-scheme based biorthogonal bivariate wavelets with high symmetry have been constructed for surface multiresolution processing. If biorthogonal wavelets have certain smoothness, then the analysis or synthesis scaling function or both have big supports in general. In particular, when the synthesis low-pass filter is a commonly used scheme such as Loop’s scheme or Catmull-Clark’s scheme, the corresponding analysis low-pass filter has a big support and the corresponding analysis scaling function and wavelets have poor smoothness. Big supports of scaling functions, or in other words big templates of multiresolution algorithms, are undesirable for surface processing. On the other hand, a frame provides flexibility for the construction of “basis” systems. This paper concerns the construction of wavelet (or affine) bi-frames with high symmetry.In this paper we study the construction of wavelet bi-frames with 4-fold symmetry for quadrilateral surface multiresolution processing, with both the dyadic and refinements considered. The constructed bi-frames have 4 framelets (or frame generators) for the dyadic refinement, and 2 framelets for the refinement. Namely, with either the dyadic or refinement, a frame system constructed in this paper has only one more generator than a wavelet system. The constructed bi-frames have better smoothness and smaller supports than biorthogonal wavelets. Furthermore, all the frame algorithms considered in this paper are given by templates so that one can easily implement them.  相似文献   

7.
Wavelets are generated from refinable functions by using multiresolution analysis. In this paper we investigate the smoothness properties of multivariate refinable functions in Sobolev spaces. We characterize the optimal smoothness of a multivariate refinable function in terms of the spectral radius of the corresponding transition operator restricted to a suitable finite dimensional invariant subspace. Several examples are provided to illustrate the general theory.

  相似文献   


8.
一类新的细分曲线方法   总被引:6,自引:1,他引:5  
Subdivision defines a smooth curve or surface as the limit of a sequence of successive refinements based on initial control polygon or grid.Usually the curve refinements is the basis of the corresponding surface rules. In this paper we analyze previous subdivision scheme according to theories about convergence of N.Dyn and M.F Hassan. In terms of binary and ternary subdivision schemes general construction about curve‘s refinements are studied.Two approximating curve subdivision schemes with neighboring four control points are derived,the generating limit curves can both reach the smoothness of C^1 over the initial polygon using the two schemes and the tolerances of them are given according to the method of [7].  相似文献   

9.
Regularity of multiwavelets   总被引:7,自引:0,他引:7  
The motivation for this paper is an interesting observation made by Plonka concerning the factorization of the matrix symbol associated with the refinement equation for B-splines with equally spaced multiple knots at integers and subsequent developments which relate this factorization to regularity of refinable vector fields over the real line. Our intention is to contribute to this train of ideas which is partially driven by the importance of refinable vector fields in the construction of multiwavelets. The use of subdivision methods will allow us to consider the problem almost entirely in the spatial domain and leads to exact characterizations of differentiability and Hölder regularity in arbitrary L p spaces. We first study the close relationship between vector subdivision schemes and a generalized notion of scalar subdivision schemes based on bi-infinite matrices with certain periodicity properties. For the latter type of subdivision scheme we will derive criteria for convergence and Hölder regularity of the limit function, which mainly depend on the spectral radius of a bi-infinite matrix induced by the subdivision operator, and we will show that differentiability of the limit functions can be characterized by factorization properties of the subdivision operator. By switching back to vector subdivision we will transfer these results to refinable vectors fields and obtain characterizations of regularity by factorization and spectral radius properties of the symbol associated to the refinable vector field. Finally, we point out how multiwavelets can be generated from orthonormal refinable bi-infinite vector fields.  相似文献   

10.
Surface multiresolution processing is an important subject in CAGD. It also poses many challenging problems including the design of multiresolution algorithms. Unlike images which are in general sampled on a regular square or hexagonal lattice, the meshes in surfaces processing could have an arbitrary topology, namely, they consist of not only regular vertices but also extraordinary vertices, which requires the multiresolution algorithms have high symmetry. With the idea of lifting scheme, Bertram (Computing 72(1–2):29–39, 2004) introduces a novel triangle surface multiresolution algorithm which works for both regular and extraordinary vertices. This method is also successfully used to develop multiresolution algorithms for quad surface and \(\sqrt 3\) triangle surface processing in Wang et al. (Vis Comput 22(9–11):874–884, 2006; IEEE Trans Vis Comput Graph 13(5):914–925, 2007) respectively. When considering the biorthogonality, these papers do not use the conventional \(L^2({{\rm I}\kern-.2em{\rm R}}^2)\) inner product, and they do not consider the corresponding lowpass filter, highpass filters, scaling function and wavelets. Hence, some basic properties such as smoothness and approximation power of the scaling functions and wavelets for regular vertices are unclear. On the other hand, the symmetry of subdivision masks (namely, the lowpass filters of filter banks) for surface subdivision is well studied, while the symmetry of the highpass filters for surface processing is rarely considered in the literature. In this paper we introduce the notion of 4-fold symmetry for biorthogonal filter banks. We demonstrate that 4-fold symmetric filter banks result in multiresolution algorithms with the required symmetry for quad surface processing. In addition, we provide 4-fold symmetric biorthogonal FIR filter banks and construct the associated wavelets, with both the dyadic and \(\sqrt 2\) refinements. Furthermore, we show that some filter banks constructed in this paper result in very simple multiresolution decomposition and reconstruction algorithms as those in Bertram (Computing 72(1–2):29–39, 2004) and Wang et al. (Vis Comput 22(9–11):874–884, 2006; IEEE Trans Vis Comput Graph 13(5):914–925, 2007). Our method can provide the filter banks corresponding to the multiresolution algorithms in Wang et al. (Vis Comput 22(9–11):874–884, 2006) for dyadic multiresolution quad surface processing. Therefore, the properties of the scaling functions and wavelets corresponding to those algorithms can be obtained by analyzing the corresponding filter banks.  相似文献   

11.
12.
本文利用计算机代数系统,通过对三进制Loop细分算法的细分矩阵和特征映射的构造与分析,证明Loop给出的掩模设计能够保证细分曲面在奇异点是C1连续的,还给出细分矩阵的次优势特征值的一个取值范围,在此范围内利用三进制Loop细分算法生成的细分曲面都是C1连续的.最后给出一种三进制Loop细分算法的新的边点掩模设计方法,在保证细分曲面是C1连续的前提下,比Loop给出的计算公式更简单,细分算法在奇异点附近收敛更快.  相似文献   

13.
本文讨论了与一般伸缩矩阵M相关的Subdivsion算法的Lp-收敛性,多个细分方程的解可由一个给定的细分函数通过迭代算法得到。  相似文献   

14.
A ternary 4-point approximating subdivision scheme   总被引:1,自引:0,他引:1  
In the implementation of subdivision scheme, three of the most important issues are smoothness, size of support, and approximation order. Our objective is to introduce an improved ternary 4-point approximating subdivision scheme derived from cubic polynomial interpolation, which has smaller support and higher smoothness, comparing to binary 4-point and 6-point schemes, ternary 3-point and 4-point schemes (see Table 2). The method is easily generalized to ternary (2n + 2)-point approximating subdivision schemes. We choose a ternary scheme because a way to get smaller support is to raise arity. And we use polynomial reproduction to get higher approximation order easily.  相似文献   

15.
We study multivariate trigonometric polynomials satisfying the “sum-rule” conditions of a certain order. Based on the polyphase representation of these polynomials relative to a general dilation matrix, we develop a simple constructive method for a special type of decomposition of such polynomials. These decompositions are of interest in the analysis of convergence and smoothness of multivariate subdivision schemes associated with general dilation matrices. The approach presented in this paper leads directly to constructive algorithms, and is an alternative to the analysis of multivariate subdivision schemes in terms of the joint spectral radius of certain operators. Our convergence results apply to arbitrary dilation matrices, while the smoothness results are limited to two classes of dilation matrices.  相似文献   

16.
The paper develops a necessary condition for the regularity of a multivariate refinable function in terms of a factorization property of the associated subdivision mask. The extension to arbitrary isotropic dilation matrices necessitates the introduction of the concepts of restricted and renormalized convergence of a subdivision scheme as well as the notion of subconvergence, i.e., the convergence of only a subsequence of the iterations of the subdivision scheme. Since, in addition, factorization methods pass even from scalar to matrix valued refinable functions, those results have to be formulated in terms of matrix refinable functions or vector subdivision schemes, respectively, in order to be suitable for iterated application. Moreover, it is shown for a particular case that the the condition is not only a necessary but also a sufficient one. Dedicated to Charles A. Micchelli, a unique person, friend, mathematician and collaborator, on the occasion of his sixtieth birthday Mathematics subject classifications (2000) 65T60, 65D99.  相似文献   

17.
Linear interpolatory subdivision schemes of Cr smoothness have approximation order at least r+1. The present paper extends this result to nonlinear univariate schemes which are in proximity with linear schemes in a certain specific sense. The results apply to nonlinear subdivision schemes in Lie groups and in surfaces which are obtained from linear subdivision schemes. We indicate how to extend the results to the multivariate case.  相似文献   

18.
A construction of interpolating wavelets on invariant sets   总被引:8,自引:0,他引:8  
We introduce the concept of a refinable set relative to a family of contractive mappings on a metric space, and demonstrate how such sets are useful to recursively construct interpolants which have a multiscale structure. The notion of a refinable set parallels that of a refinable function, which is the basis of wavelet construction. The interpolation points we recursively generate from a refinable set by a set-theoretic multiresolution are analogous to multiresolution for functions used in wavelet construction. We then use this recursive structure for the points to construct multiscale interpolants. Several concrete examples of refinable sets which can be used for generating interpolatory wavelets are included.

  相似文献   


19.
In the recent literature on subdivision methods for approximation of manifold-valued data, a certain “proximity condition” comparing a nonlinear subdivision scheme to a linear subdivision scheme has proved to be a key analytic tool for analyzing regularity properties of the scheme. This proximity condition is now well known to be a sufficient condition for the nonlinear scheme to inherit the regularity of the corresponding linear scheme (this is called smoothness equivalence). Necessity, however, has remained an open problem. This paper introduces a smooth compatibility condition together with a new proximity condition (the differential proximity condition). The smooth compatibility condition makes precise the relation between nonlinear and linear subdivision schemes. It is shown that under the smooth compatibility condition, the differential proximity condition is both necessary and sufficient for smoothness equivalence. It is shown that the failure of the proximity condition corresponds to the presence of resonance terms in a certain discrete dynamical system derived from the nonlinear scheme. Such resonance terms are then shown to slow down the convergence rate relative to the convergence rate of the corresponding linear scheme. Finally, a super-convergence property of nonlinear subdivision schemes is used to conclude that the slowed decay causes a breakdown of smoothness. The proof of sufficiency relies on certain properties of the Taylor expansion of nonlinear subdivision schemes, which, in addition, explain why the differential proximity condition implies the proximity conditions that appear in previous work.  相似文献   

20.
Approximation properties of multivariate wavelets   总被引:12,自引:0,他引:12  
Wavelets are generated from refinable functions by using multiresolution analysis. In this paper we investigate the approximation properties of multivariate refinable functions. We give a characterization for the approximation order provided by a refinable function in terms of the order of the sum rules satisfied by the refinement mask. We connect the approximation properties of a refinable function with the spectral properties of the corresponding subdivision and transition operators. Finally, we demonstrate that a refinable function in provides approximation order .

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号