首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palladium‐catalyzed base‐selective annulation of dibromonaphthalimide to different aryl boronate esters by combined Suzuki–Miyaura cross‐coupling and direct C−H arylation afforded a series of new five‐ and six‐membered ring annulated electron‐poor polycyclic aromatic hydrocarbons. Cesium carbonate (Cs2CO3) as auxiliary base in these C−C coupling cascade reactions led exclusively to six‐membered ring annulation, while the use of organic base diazabicycloundecene (DBU) afforded the corresponding five‐membered ring annulated products. This base‐dependent selective mode of annulation is attributed to different mechanistic pathways directed by the applied base. The selective annulation was revealed by single crystal X‐ray analysis of the respective five‐ and six‐membered ring annulated products. The optical and redox properties of the new polycyclic aromatic dicarboximides were characterized by UV/Vis absorption and fluorescence spectroscopy and cyclic voltammetry.  相似文献   

2.
Transition‐metal‐free formal Sonogashira coupling and α‐carbonyl arylation reactions have been developed. These transformations are based on the nucleophilic aromatic substitution (SNAr) of β‐carbonyl sulfones to electron‐deficient aryl fluorides, producing a key intermediate that, depending on the reaction conditions, gives the aromatic alkynes or α‐aryl carbonyl compounds. The development of these reactions is presented and, based on investigations under basic and acidic conditions, mechanisms have been proposed. To develop the formal Sonogashira coupling further, a milder, two‐step protocol is also disclosed that expands the reaction concept. The scope of these reactions is demonstrated for the synthesis of Sonogashira and α‐carbonyl arylated products from a range of electron‐deficient aryl fluorides with a variety of functional groups and aryl‐, heteroaryl‐, alkyl‐, and alkoxy‐substituted sulfone nucleophiles. These transition‐metal‐free reactions complement the metal‐catalyzed versions in terms of substitution patterns, simplicity, and reaction conditions.  相似文献   

3.
Direct C? H arylation of unactivated benzene with aryl halides was achieved using a readily available copper catalyst. The reaction was carried out at 80 °C, using CuBr as catalyst, proline as ligand and t‐BuOK as base. This radical cross‐coupling reaction between unactivated benzene and aryl iodides proceeds via homolytic aromatic substitution and offers an efficient method for the synthesis of various biaryls in good to excellent yields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A convenient approach has been developed to prepare polyfluorobiphenyl by Pd(OAc)2/PCy3‐catalyzed direct arylation of polyfluoroarenes with aromatic halides in the presence of Cs2CO3 as base and toluene as solvent. In most cases, the desired arylated products of aromatic bromides were obtained in good to excellent yield at 80°C, and aryl chlorides also gave modest to good yields of arylated products at 110°C. According to this efficient C―C bondforming method, polyfluorobiphenyl liquid crystal compounds were prepared by Pd‐catalyzed direct arylation reactions of polyfluoroarenes with long alkyl chain substituted aryl bromides in 62–96% yield. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
《化学:亚洲杂志》2017,12(21):2819-2826
Mono‐, di‐, tri‐, and tetraarylated thieno[3,2‐b ]thiophenes were synthesized by direct site‐selective Pd‐catalyzed C−H activation reactions with various aryl bromides in the presence of a phosphine‐free Pd(OAc)2/KOAc catalyst system in N ,N ‐dimethylacetamide (DMAc). The arylation of 2‐arylthieno[3,2‐b ]thiophene took place at the C3 position if the 2‐aryl substituents possessed electron‐withdrawing groups and at the C5 position if they were bulky and possessed electron‐donating groups.  相似文献   

6.
Current state‐of‐the‐art protocols for the coupling of unreactive amines (e.g., electron‐poor anilines) with deactivated oxidative‐addition partners (e.g., electron‐rich and/or hindered aryl chlorides) involve strong heating (usually >100 °C) and/or tert‐butoxide base, and even then not all couplings are successful. The aggressive base tert‐butoxide reacts with and in many instances destroys the typical functional groups that are necessary for the function of most organic molecules, such as carbonyl groups, esters, nitriles, amides, alcohols, and amines. The new catalyst described herein, Pd‐PEPPSI‐IPentClo‐picoline, is able to aminate profoundly deactivated coupling partners when using only carbonate base at room temperature.  相似文献   

7.
A new methodology for the double N‐arylation of diketopyrrolopyrroles with aryl triflates has been developed. It is now possible to prepare diketopyrrolopyrroles bearing N‐substituents derived from naphthalene, anthracene and coumarin in two steps from commercially available phenols. This represents the first time arenes lacking strong electron‐withdrawing groups were inserted onto lactamic nitrogen atoms via arylation. The ability to incorporate heretofore unprecedented substituents translates to increased modulation of the resulting photophysical properties such as switching‐on/off solvatofluorochromism. TD‐DFT calculations have been performed to explore the nature of the relevant excited states. This new synthetic method made it possible to elucidate the influence of such substituents on the absorption and emission properties of tetraaryl substituted diketopyrrolopyrroles.  相似文献   

8.
《化学:亚洲杂志》2017,12(4):459-464
A method that allows hindered ortho ‐substituted aryl iodides to be efficiently coupled to phenylboronic acid using a gold‐catalyzed C−C bond formation is presented. The use of a molecularly‐defined dinuclear gold chloride catalytic precursor that is stabilized by a new tetradentate (N ,N′ )‐diamino‐(P,P′ )‐diphosphino ferrocene hybrid ligand in a Suzuki‐type reaction is described for the first time. Electron‐rich isopropyl groups on phosphorus were found essential for a superior activity, while the performances of a set of analogous gold dinuclear complexes that were fully characterized by multinuclear NMR spectroscopy and XRD analysis, were investigated. Therefore, arylation of para and ortho ‐substituted iodoarenes bearing electron‐rich, electron‐poor functional groups, and even hindered polycyclic aromatic compounds is described.  相似文献   

9.
We have developed a simple and direct method for the synthesis of aryl ethers by reacting alcohols/phenols (ROH) with aryl ammonium salts (ArNMe3+), which are readily prepared from anilines (ArNR′2, R′=H or Me). This reaction proceeds smoothly and rapidly (within a few hours) at room temperature in the presence of a commercially available base, such as KOtBu or KHMDS, and has a broad substrate scope with respect to both ROH and ArNR′2. It is scalable and compatible with a wide range of functional groups.  相似文献   

10.
We have developed a simple and direct method for the synthesis of aryl ethers by reacting alcohols/phenols (ROH) with aryl ammonium salts (ArNMe3+), which are readily prepared from anilines (ArNR′2, R′=H or Me). This reaction proceeds smoothly and rapidly (within a few hours) at room temperature in the presence of a commercially available base, such as KOtBu or KHMDS, and has a broad substrate scope with respect to both ROH and ArNR′2. It is scalable and compatible with a wide range of functional groups.  相似文献   

11.
The reactivity of the phenyl substituent of 4‐phenylthiazoles in Ru‐catalyzed direct arylation was studied. 4‐Phenylthiazole was found to be unreactive; whereas, the introduction of an aryl unit at C5‐position of 4‐phenylthiazole enhances its reactivity, allowing the selective mono‐arylation of the phenyl unit of 4‐phenylthiazoles in moderate to high yields using 5 mol% of [Ru(p‐cymene)Cl2]2 catalyst precursor associated to KOPiv as base. These results reveal that the conformation and electronic properties of 4‐phenylthiazoles are crucial to allow the formation of suitable intermediates in the course of the catalytic cycle. The reaction tolerated both electron‐rich and electron‐poor aryl bromides allowing the straightforward tuning of the electronic properties of the arylated 2‐methyl‐4‐phenyl‐5‐arylthiazoles.  相似文献   

12.
An intriguing C?N transformation involving a catalyst‐free N‐alkylation/N′‐arylation process in a multicomponent reaction with secondary amines, cyclic tertiary amines and electron‐deficient aryl halides has been described. In this case, the N‐alkylation of secondary amines, utilizing cyclic tertiary amines as alkyl group sources, is enabled by a facile C?N cleavage. Such an operationally simple method could facilitate access to aromatic aminoalkyl amines, nitrogen‐containing bioactive molecules, in good to excellent yields.  相似文献   

13.
Constructing biaryls through direct aromatic C? H functionalization of unactivated arenes has become a popular topic in organic chemistry. Many efficient methods have been developed. In this Communication, a direct arylation of unactivated arenes with a broad range of aryl iodides is reported. This reaction proceeds through a new type of amine‐catalyzed single electron transfer initiated radical coupling procedure to form biaryls in high yields under UV irradiation at room temperature. Only 20 mol% of TMEDA is used as the catalyst. No other additives are required for this transformation, thus avoiding the use of toxic transition metal catalysts, strong bases, or large amounts of other organic additives. This greener protocol provides a new strategy to achieve direct aromatic C? H functionalization and offers a new example of cost‐effective and environmentally benign access to biaryls.  相似文献   

14.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

15.
A mixed directing‐group strategy for inexpensive [Co(acac)3]‐catalyzed oxidative C?H/C?H bond arylation of unactivated arenes has been disclosed. This strategy enables the arylation of a wide range of benzamide and arylpyridines effectively to afford novel bifunctionalized biaryls, which are difficult to achieve by common synthetic routes. Two different pathways, namely, a single‐electron‐transmetalation process (8‐aminoquinoline‐directed) and a concerted metalation–deprotonation process (pyridine‐directed), were involved to activate two different inert aromatic C?H bonds. Moreover, the aryl radicals have been trapped by 2,6‐di‐tert‐butyl‐4‐methylphenol to form benzylated products. This unique strategy should be useful in the design of other arene C?H/C?H cross‐couplings as well.  相似文献   

16.
Available α‐amino acids undergo arylation at their α position in an enantioselective manner on treatment with base of N′‐aryl urea derivatives ligated to pseudoephedrine as a chiral auxiliary. In situ silylation and enolization induces diastereoselective migration of the N′‐aryl group to the α position of the amino acid, followed by ring closure to a hydantoin with concomitant explulsion of the recyclable auxiliary. The hydrolysis of the hydantoin products provides derivatives of quaternary amino acids. The arylation avoids the use of heavy‐metal additives, and is successful with a range of amino acids and with aryl rings of varying electronic character.  相似文献   

17.
The formation of aryl C−S bonds is an important chemical transformation because aryl sulfides are valuable building blocks for the synthesis of biologically and pharmaceutically active molecules and organic materials. Aryl sulfides have traditionally been synthesized through the transition‐metal‐catalyzed cross‐coupling of aryl halides with thiols. However, the aryl halides used are usually bromides and iodides; readily available, low‐cost aryl chlorides often not reactive enough. Furthermore, the deactivation of transition‐metal catalysts by thiols has forced chemists to use high catalyst loadings, specially designed ligands, high temperatures, and/or strong bases, thus leading to high costs and the incompatibility of some functional groups. Herein, we describe a simple and efficient visible‐light photoredox arylation of thiols with aryl halides at room temperature. More importantly, various aryl chlorides are also effective arylation reagents under the present conditions.  相似文献   

18.
Unsymmetrical piperazines are key constituents of many pharmaceuticals. Given that the selective introduction of an aryl and alkyl motif onto the piperazine is not always straightforward, direct arylation and alkenylation of 1,4‐diaza‐bicyclo[2.2.2]octane would obviate the inefficiencies associated with the preparation of these target molecules. We have utilized alkyl halides, aryl or alkenyl triflates, and 1,4‐diaza‐bicyclo[2.2.2]octane for the synthesis of N‐alkyl‐N ′‐aryl or alkenylpiperazines. The optimum conditions are developed using CuCl, t‐BuOL i in NMP . Alkenyl triflates requires N ,N ′‐dimethylethylenediamine and higher temperature to afford the desired cross‐coupled product. Substrates bearing electron‐deficient and electron‐rich groups were successfully coupled under the optimum reaction conditions.  相似文献   

19.
C?H arylation of polyfluoroarenes and heteroarenes with aryl sulfides proceeds smoothly with the aid of a palladium–N‐heterocyclic carbene catalyst. A bulky zinc amide, TMPZnCl ? LiCl, plays a key role as an effective base to generate the corresponding arylzinc species in situ. This arylation protocol is practically much easier to perform than our previous method, which necessitates preparation of the arylzinc reagents in advance from the corresponding aryl halides. Aryl sulfides that are prepared through sulfur‐specific reactions, such as SNAr sulfanylation and extended Pummerer reactions, undergo this direct arylation, offering interesting transformations that are otherwise difficult to achieve with conventional halogen‐based organic synthesis.  相似文献   

20.
Despite recent advances, reactivity and site‐selectivity remain significant obstacles for the practical application of C(sp3)?H bond functionalization methods. Here, we describe a system that combines a salicylic‐aldehyde‐derived L,X‐type directing group with an electron‐deficient 2‐pyridone ligand to enable the β‐methylene C(sp3)?H arylation of aliphatic alcohols, which has not been possible previously. Notably, this protocol is compatible with heterocycles embedded in both alcohol substrates and aryl coupling partners. A site‐ and stereo‐specific annulation of dihydrocholesterol and the synthesis of a key intermediate of englitazone illustrate the practicality of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号