首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
Using a halogen bond (XB) donor and Schreiner's thiourea as cooperative catalysts, various amides, including the asparagine residues of several peptides, were directly coupled with glycosyl trichloroacetimidates to give unique N‐acylorthoamides in good yields. Synthetic applications of N‐acylorthoamides, including rearrangement to the corresponding β‐N‐glycoside, were also demonstrated.  相似文献   

4.
The first asymmetric organocatalytic synthesis of helicenes is reported. A novel SPINOL‐derived phosphoric acid, bearing extended π‐substituents, catalyzes the asymmetric synthesis of helicenes through an enantioselective Fischer indole reaction. A variety of azahelicenes and diazahelicenes could be obtained with good to excellent yields and enantioselectivities.  相似文献   

5.
An efficient method for the benzenium‐ion‐mediated cleavage of inert Si−C(sp3) bonds is reported. Various tetraalkylsilanes can thus be converted into the corresponding counteranion‐stabilized silylium ions. The reaction is chemoselective in the case of hexamethyldisilane. Computations reveal a mechanism with backside attack of the proton at one of the alkyl groups. Several activated Si−C(spn) bonds (n=3–1) react equally well, and the procedure can be extended to the generation of stannylium ions.  相似文献   

6.
7.
The direct enantioselective synthesis of chiral azaheteroaryl ethylamines from vinyl‐substituted N‐heterocycles and anilines is reported. A chiral phosphoric acid (CPA) catalyst promotes dearomatizing aza‐Michael addition to give a prochiral exocyclic aryl enamine, which undergoes asymmetric protonation upon rearomatization. The reaction accommodates a broad range of N‐heterocycles, nucleophiles, and substituents on the prochiral centre, generating the products in high enantioselectivity. DFT studies support a facile nucleophilic addition based on catalyst‐induced LUMO lowering, with site‐selective, rate‐limiting, intramolecular asymmetric proton transfer from the ion‐paired prochiral intermediate.  相似文献   

8.
The formal [3+2] cycloaddition of epoxides and unsaturated compounds is a powerful methodology for the synthesis of densely functionalized five‐membered heterocyclic compounds containing oxygen. Described is a novel enantioselective formal [3+2] cycloaddition of epoxides under Brønsted base catalysis. The bis(guanidino)iminophosphorane as a chiral organosuperbase catalyst enabled the enantioselective reaction of β,γ‐epoxysulfones with imines, owing to its strong basicity and high stereocontrolling ability, to provide enantioenriched 1,3‐oxazolidines having two stereogenic centers, including a quaternary one, in a highly diastereo‐ and enantioselective manner.  相似文献   

9.
10.
11.
An enriching experience : Chiral phosphoric acids have been used to catalyze the title transformation for aromatic and aliphatic hemiaminal ethers. The process affords the corresponding products in good to high enantioselectivity (see scheme; Boc=tert‐butoxycarbonyl, G=aromatic group). The method enables facile access to highly enantioenriched 1,3‐diamine derivatives.

  相似文献   


12.
A readily available chiral Brønsted acid was identified as an efficient catalyst for intramolecular Povarov reactions. Polycyclic amines containing three contiguous stereogenic centers were obtained with excellent stereocontrol in a single step from secondary anilines and aldehydes possessing a pendent dienophile. These transformations constitute the first examples of catalytic enantioselective intramolecular aza‐Diels–Alder reactions.  相似文献   

13.
We describe here the design and development of an organocatalytic Prins cyclization. In the presence of a confined chiral imidodiphosphoric acid catalyst, salicylaldehydes react with 3‐methyl‐3‐buten‐1‐ol to afford highly functionalized 4‐methylenetetrahydropyrans in excellent regio‐ and enantioselectivity. The extreme steric demand of the acid catalyst is key for the success of this transformation.  相似文献   

14.
The highly enantioselective conjugate addition of enamides and enecarbamates to in situ‐generated ortho‐quinone methides, upon subsequent N,O‐acetalization, gives rise to acetamido‐substituted tetrahydroxanthenes with generally excellent enantio‐ and diastereoselectivities. A chiral BINOL‐based phosphoric acid catalyst controls the enantioselectivity of the carbon–carbon bond‐forming event. The products are readily converted into other xanthene‐based heterocycles.  相似文献   

15.
A Brønsted acid catalyzed direct alkylation reaction of aldehydes was described. The 3,5‐dinitrobenzoic acid promoted the reaction between aldehydes and diarylmethanols to afford the corresponding alkylation products with middle to high yields (up to 91% yield).  相似文献   

16.
The Prins cyclization of enol ethers has been realized by employing BiX3 (or FeX3) as catalyst and TMSX (X=Br, Cl) as the halogen source. The presence of a tiny amount of water in the solvent dichloromethane played a key role for the reaction to proceed. The reaction is believed to be catalyzed by Lewis acid‐assisted Brønsted acids, which were generated in situ from MX3 and water in the solvent.  相似文献   

17.
18.
19.
20.
A convergent, organocatalytic asymmetric aminomethylation of α,β‐unsaturated aldehydes by N‐heterocyclic carbene (NHC) and (in situ generated) Brønsted acid cooperative catalysis is disclosed. The catalytically generated conjugated acid from the base plays dual roles in promoting the formation of azolium enolate intermediate, formaldehyde‐derived iminium ion (as an electrophilic reactant), and methanol (as a nucleophilic reactant). This redox‐neutral strategy is suitable for the scalable synthesis of enantiomerically enriched β2‐amino acids bearing various substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号