首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enantioselective protonation with a catalytic enamine intermediate represents a challenging, yet fundamentally important process for the synthesis of α‐chiral carbonyls. We describe herein chiral primary‐amine‐catalyzed conjugate additions of indoles to both α‐substituted acroleins and vinyl ketones. These reactions feature enamine protonation as the stereogenic step. A simple primary–tertiary vicinal diamine 1 with trifluoromethanesulfonic acid (TfOH) was found to enable both of the reactions of acroleins and vinyl ketones with good activity and high enantioselectivity. Detailed mechanistic studies reveal that these reactions are rate‐limiting in iminium formation and they all involve a uniform H2O/acid‐bridged proton transfer in the stereogenic steps but divergent stereocontrol modes for the protonation stereoselectivity. For the reactions of α‐branched acroleins, facial selections on H2O‐bridged protonation determine the enantioselectivity, which is enhanced by an OH???π interaction with indole as uncovered by DFT calculations. On the other hand, the stereoselectivity of the reactions with vinyl ketones is controlled according to the Curtin–Hammett principle in the C? C bond‐formation step, which precedes a highly stereospecific enamine protonation.  相似文献   

2.
The catalytic cyclocondensation of in situ activated α,β‐unsaturated carboxylic acids was developed. N‐heterocyclic carbenes efficiently catalyzed the generation of α,β‐unsaturated acyl azolium intermediates from α,β‐unsaturated carboxylic acids via in situ generated mixed anhydrides for the enantioselective [3+2] and [3+3] cyclocondensation with α‐amino ketones and alkyl(aryl)imines, respectively. The corresponding pyrrolidinones and dihydropyridinones were isolated in good yields with high to excellent enantioselectivities.  相似文献   

3.
A one‐pot O‐phosphinative Passerini/Pudovik reaction has been developed, based on reacting aldehydes, isocyanides, and phosphinic acids followed by the addition of second aldehydes to form the corresponding α‐(phosphinyloxy)amide derivatives. This is the first reported instance of a Passerini‐type, isocyanide‐based multicomponent reaction using a phosphinic acid instead of a carboxylic acid. The nucleophilicity of the phosphinate group allows a subsequent catalytic Pudovik‐type reaction, affording the highly functionalized α‐(phosphinyloxy)amide derivative in high yield. A wide range of aldehydes and isocyanides are applicable to this reaction.  相似文献   

4.
The synthesis of alkyl boronic esters by direct decarboxylative radical addition of carboxylic acids to vinyl boronic esters is described. The reaction proceeds under mild photoredox catalysis and involves an unprecedented single‐electron reduction of an α‐boryl radical intermediate to the corresponding anion. The reaction is amenable to a diverse range of substrates, including α‐amino, α‐oxy, and alkyl carboxylic acids, thus providing a novel method to rapidly access boron‐containing molecules of potential biological importance.  相似文献   

5.
A highly enantioselective three‐component hydroacyloxylation/1,4‐conjugate addition of ortho‐hydroxybenzyl alcohols, ynamides and carboxylic acids was developed under mild reaction conditions in the presence of a chiral N,N′‐dioxide/Sc(OTf)3 complex, which went through in situ generated ortho‐quinone methides with α‐acyloxyenamides, delivering a range of corresponding chiral α‐acyloxyenamides derivatives containing gem(1,1)‐diaryl skeletons in moderate to good yields with excellent ee values. The scale‐up experiment and further derivation showed the practicality of this catalytic system. In addition, a possible catalytic cycle and transition state model was proposed to elucidate the origin of the stereoselectivity based on X‐ray crystal structure of the α‐acyloxyenamide intermediate and product.  相似文献   

6.
Chiral α‐functionalized carboxylic acids are valuable precursors for a variety of medicines and natural products. Herein, we described an engineered fatty acid photodecarboxylase (CvFAP)‐catalyzed kinetic resolution of α‐amino acids and α‐hydroxy acids, which provides the unreacted R‐configured substrates with high yields and excellent stereoselectivity (ee up to 99 %). This efficient light‐driven process requires neither NADPH recycling nor prior preparation of esters, which were required in previous biocatalytic approaches. The structure‐guided engineering strategy is based on the scanning of large amino acids at hotspots to narrow the substrate binding tunnel. To the best of our knowledge, this is the first example of asymmetric catalysis by an engineered CvFAP.  相似文献   

7.
The direct α‐vinylation of carbonyl compounds to form a quaternary stereocenter is a challenging transformation. It was discovered that δ‐oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium‐catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α‐vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (−)‐aspewentins A, B, and C is demonstrated.  相似文献   

8.
A dual functionalization of 1,1‐diborylalkanes through deoxygenative enolization with carboxylic acids was developed. 1,1‐Diborylalkanes were activated by MeLi to generate α‐monoboryl carbanions. In situ IR spectroscopy indicated an interaction between carboxylic acid and 1,1‐diborylalkane before addition of the activation reagent. Release of the active α‐monoboryl carbanion from the masked form was necessary for its reaction with carboxylate to afford enolate species. Electrophilic trapping of enolate species with various electrophiles achieved dual functionalization of 1,1‐diborylalkanes to afford a variety of α‐mono, di‐, and tri‐substituted ketones.  相似文献   

9.
The direct α‐vinylation of carbonyl compounds to form a quaternary stereocenter is a challenging transformation. It was discovered that δ‐oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium‐catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α‐vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (?)‐aspewentins A, B, and C is demonstrated.  相似文献   

10.
Catalytic enantioselective α‐fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α‐fluorinated carbonyl compounds. Nevertheless, α‐fluorination of α‐nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α‐hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3‐(2‐naphthyl)‐l ‐alanine‐derived amides are highly effective catalysts for the enantio‐ and site‐selective α‐fluorination of N‐(α‐arylacetyl) and N‐(α‐alkylacetyl) 3,5‐dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α‐fluorinated α‐amino acid derivative). α‐Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

11.
The biomimic reactions of N‐phosphoryl amino acids, which involved intramolecular penta‐coordinate phosphoric‐carboxylic mixed anhydrides, are very important in the study of many biochemical processes. The reactivity difference between the α‐COOH group and β‐COOH in phosphoryl amino acids was studied by experiments and theoretical calculations. It was found that the α‐COOH group, and not β‐COOH, was involved in the ester exchange on phosphorus in experiment. From MNDO calculations, the energy of the penta‐coordinate phosphoric intermediate containing five‐member ring from α‐COOH was 35 kJ/mol lower than that of the six‐member one from β‐COOH. This result was in agreement with that predicted by HF/6‐31G** and B3LYP/6‐31G** calculations. Theoretical three‐dimensional potential energy surface for the intermediates predicted that the transition states 4 and 5 involving α‐COOH or β‐COOH group had energy barriers of ΔE=175.8 kJ?mol?1 and 210.4 kJ?mol?1, respectively. So the α‐COOH could be differentiated from β‐COOH intramolecularly in aspartic acids by N‐phosphorylation. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 41–51, 2001  相似文献   

12.
A new convenient synthesis of N‐carboxyanhydrides (NCAs) of α‐amino acids was achieved by selective cyclization of urethane derivatives of α‐amino acids. The urethanes were readily synthesized via N‐carbamoylation of α‐amino acids by bis(4‐nitrophenyl)carbonate quantitatively. These urethanes having 4‐nitrophenoxy moiety were tolerant to air and moisture to allow their facile purification and storage. When the obtained urethanes were heated in 2‐butanone at 60 °C, they underwent the selective cyclization via intramolecular nucleophilic attack of the carboxyl moiety to the urethane moiety with releasing 4‐nitrophenol, leading to the successful formation of the corresponding NCAs. Addition of carboxylic acids remarkably stabilized the formed NCAs during the reaction, allowing their isolation in high yields. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3839–3844, 2009  相似文献   

13.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

14.
The synthesis of all 20 common natural proteinogenic and 4 otherα‐amino acid‐isosteric α‐amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5‐tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α‐amino acid‐isosteric α‐amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non‐natural derivatives is of high interest to advance the field.  相似文献   

15.
An enantioselective rhodium‐catalyzed allylic alkylation of β,γ‐unsaturated α‐amino nitriles is described. This protocol provides a novel approach for the construction of β‐stereogenic carbonyl derivatives via the catalytic asymmetric alkylation of a homoenolate equivalent. The particularly challenging nature of this transformation is highlighted by the fact that three modes of selectivity must be manipulated, namely regio‐ and enantioselectivity, in addition to geometrical control. The γ‐stereogenic cyanoenamine products can be readily hydrolyzed in situ to afford the β‐substituted carboxylic acids, which in turn provide expedient access to a number of related carbonyl derivatives. Additionally, control experiments indicate that the chiral rhodium‐allyl intermediate facilitates the selective formation of the E‐cyanoenamine products, which is critical since the Z‐isomer affords significantly lower enantiocontrol.  相似文献   

16.
The first highly enantioselective iridium‐catalyzed allylic alkylation that provides access to products bearing an allylic all‐carbon quaternary stereogenic center has been developed. The reaction utilizes a masked acyl cyanide (MAC) reagent, which enables the one‐pot preparation of α‐quaternary carboxylic acids, esters, and amides with a high degree of enantioselectivity. The utility of these products is further explored through a series of diverse product transformations.  相似文献   

17.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

18.
The reaction of bicyclo[1.1.0]butyl pinacol boronic ester (BCB‐Bpin) with nucleophiles has been studied. Unlike BCBs bearing electron‐withdrawing groups, which react with nucleophiles at the β‐position, BCB‐Bpin reacts with a diverse set of heteroatom (O, S, N)‐centred nucleophiles exclusively at the α‐position. Aliphatic alcohols, phenols, carboxylic acids, thiols and sulfonamides were found to be competent nucleophiles, providing ready access to α‐heteroatom‐substituted cyclobutyl boronic esters. In contrast, sterically hindered bis‐sulfonamides and related nucleophiles reacted with BCB‐Bpin at the β′‐position leading to cyclopropanes with high trans‐selectivity. The origin of selectivity is discussed.  相似文献   

19.
Earth‐abundant nickel, coordinated with a suitable chiral bisphosphine ligand, was found to be an efficient catalyst for the asymmetric hydrogenation of 2‐amidoacrylates, affording the chiral α‐amino acid esters in quantitative yields and excellent enantioselectivity (up to 96 % ee). The active catalyst component was studied by NMR and HRMS, which helped us to realize high catalytic efficiency on a gram scale with a low catalyst loading (S/C=2000). The hydrogenated products could be simply converted into chiral α‐amino acids, β‐amino alcohols, and their bioactive derivatives. Furthermore, the catalytic mechanism was investigated using deuterium‐labeling experiments and computational calculations.  相似文献   

20.
Herein, we describe an intermolecular direct branched‐selective α‐alkylation of cyclic ketones with simple alkenes as the alkylation agents. Through an enamine‐transition metal cooperative catalysis mode, the α‐alkylation is realized in an atom‐ and step‐economic manner with excellent branched selectivity for preparing β‐branched ketones. Employment of a pair of bulky Brønsted acid and base as additives is responsible for enhanced efficiency. Promising enantioselectivity (74 % ee) has been obtained. Experimental and computational mechanistic studies suggest that a pathway through alkene migratory insertion into the Ir?C bond followed by C?H reductive elimination is involved for the high branched selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号