首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The total synthesis of mixed‐sequence alginate oligosaccharides, featuring both β‐D ‐mannuronic acid (M) and α‐L ‐guluronic acid (G), is reported for the first time. A set of GM, GMG, GMGM, GMGMG, GMGMGM, GMGMGMG, and GMGGMG alginates was assembled using GM building blocks, having a guluronic acid acceptor part and a mannuronic acid donor side to allow the fully stereoselective construction of the cis‐glycosidic linkages. It was found that the nature of the reducing‐end anomeric center, which is ten atoms away from the reacting alcohol group in the key disaccharide acceptor, had a tremendous effect on the efficiency with which the building blocks were united. This chiral center determines the overall shape of the acceptor and it is revealed that the conformational flexibility of the acceptor is an all‐important factor in determining the outcome of a glycosylation reaction.  相似文献   

2.
Two novel series of monodisperse multi‐triarylamine‐substituted oligothiophenes, G 2 ‐ OT ( n )‐ G 2 with thiophene unit (n) varying from 6 to 8, and 4,7‐bis(2′‐oligothienyl)‐2,1,3‐benzothiadiazoles G 2 ‐ OT ( n ) BTD ‐ G 2 (n = 2, 4, 6) have been synthesized by the Suzuki coupling reactions. With an elongation of alkyl‐substituted oligothiophene core or an incorporation of benzothiadiazole into the central core, the absorption and emission spectra of G 2 ‐ OT ( n )‐ G 2 and G 2 ‐ OT ( n ) BTD ‐ G 2 series red‐shift substantially with the optical gap reducing to 1.95 eV for G 2 ‐ OT ( 6 ) BTD ‐ G 2 . Alkyl‐substitution onto oligothiophene backbone not only improves the solubility of the highly extended dendrimers but also renders coplanarity of the dendritic oligothiophene backbone at the excited state, which results in the enhancement of fluorescence quantum efficiency. The bulk heterojunction solar cells using these newly synthesized dendritic oligothiophenes as a donor material and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) as an acceptor material were fabricated and investigated which showed an increase in device performance as compared with those of the lower homologues. On increasing the loading of PCBM from 1.5 to 3 times in the active layer, there was also an enhancement in device performance with power conversion efficiencies of as‐fabricated solar cells increasing from 0.18% to 0.32%. In addition, proper annealing procedure could significantly improve the device performance of the dendrimer‐based photovoltaic cell. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 137–148, 2009  相似文献   

3.
Poly(N‐isopropylacrylamide)s (PNIPAMs) with cholesteryl or pyrenyl moieties at each chain end (CH‐PNIPAMs or Py‐PNIPAMs) were prepared via end‐group modification of α,ω‐dimercapto poly(N‐isopropylacrylamides), ranging in molecular weight from ~ 7000 to 45,000 g mol?1 with a polydispersity index of 1.10 or lower. The telechelic thiol functionalized PNIPAMs were obtained by aminolysis of α,ω‐di(isobutylthiocarbonylthio)‐poly(N‐isopropylacrylamide)s (iBu‐PNIPAMs) obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐isopropylacrylamide in the presence of the difunctional chain transfer agent, diethylene glycol di(2‐(1‐isobutyl)sulfanylthiocarbonylsulfanyl‐2‐methyl propionate) (DEGDIM). The self‐assembly of the polymers in water was assessed by fluorescence spectroscopy, using the intrinsic emission of Py‐PNIPAM or the emission of pyrene added as a probe in aqueous solutions of CH‐PNIPAM. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 314–326, 2008  相似文献   

4.
The structure of the title compound, C28H38O18S, has been determined. The torsion angles of the glycosidic linkage in the non‐reducing disaccharide, ?H and ?H′, have values of 3 and 53°, respectively. The latter torsion angle is in agreement with the exo‐anomeric effect, whereas the former shows an eclipsed conformation. Both glyco­pyran­osyl residues adopt a slightly distorted chair conformation.  相似文献   

5.
A water‐soluble benzenesulfonamidoquinolino‐β‐cyclodextrin has been successfully synthesized in 30 % yield by incorporating a N‐(8‐quinolyl)‐p‐aminobenzenesulfonamide (HQAS) group to β‐cyclodextrin through a flexible linker. This compound exhibits a good fluorescence response in the presence of Zn2+ in water but gives poor fluorescence responses with other metal ions commonly present in a physiological environment under similar conditions. Fluorescence microscopic and two‐dimensional NMR experiments showed that benzenesulfonamidoquinolino‐β‐cyclodextrin could bind to the loose bilayer membranes. As a result, benzenesulfonamidoquinolino‐β‐cyclodextrin was found to act as an efficient cell‐impermeable Zn2+ probe, showing a specific fluorescent sensing ability to Zn2+‐containing damaged cells whilst exhibiting no response in the presence of healthy cells.  相似文献   

6.
《中国化学》2017,35(11):1711-1716
A fluorescent turn‐on probe for specifically targeting γ ‐glutamyltranspeptidase (GGT ) was designed and synthesized by integrating boron‐dipyrromethene (BODIPY ) as a chromophore and glutathione (GSH ) as the GGT substrate. GGT ‐catalyzed the cleavage of the γ ‐glutamyl bond and generated the aromatic hydrocarbon transfer between the sulfur and the nitrogen atom in BODIPY , leading to distinct optical changes. Such specific responsiveness provides an easily distinguishable fluorescence signal to visualize the GGT activity in living cells and differentiate GGT ‐positive cancer cells from GGT ‐negative cells.  相似文献   

7.
The water content of the title compound, C13H24O10·3H2O, creates an extensive hydrogen‐bonding pattern, with all the hydroxyl groups of the disaccharide acting as hydrogen‐bond donors and acceptors. The water molecules are arranged in columns along the crystallographic b axis and form, together with one of the hydroxyl groups, infinite hydrogen‐bonded chains. The conformation of the disaccharide is described by glycosidic torsion angles of −38 and 18°.  相似文献   

8.
The protected apiose-containing disaccharide, benzyl O-(2,3, 3'-tri-O-acetyl-β-D-apiofuranosyl)-( 1→3)-2, 4-di-O-benzoyl-α-D-xylopyranoside, was synthesized and its X-ray structure provided.  相似文献   

9.
A novel cellobiose–polylysine dendrimer with reducing sugar terminals was synthesized in which the reactive reducing end of a disaccharide cellobiose was directing outward. Hexa‐O‐benzyl‐4′‐(1‐carboxyethyl)‐cellobioside (HBCEC) was synthesized through the reaction of a 4′‐hydroxyl group of benzyl hexa‐O‐benzyl‐cellobioside with methyl 2‐chloropropionate, followed by the removal of the methyl ester group. HBCEC was reacted with polylysine dendrimer generation 3 (G3) to produce benzylated cellobiose–polylysine dendrimer G3. After debenzylation, a cellobiose–polylysine dendrimer G3 was obtained in which the reducing end of the cellobiose was the terminal group of the dendrimer. For the preparation of a dendrimer‐type acquired immunodeficiency syndrome vaccine, the cellobiose–polylysine dendrimer was reacted with a tripeptide (glycyl–prolyl–leucine) and a cyclic oligopeptide from the human immunodeficiency virus by reductive amination; this produced a tripeptide‐bound cellobiose–polylysine dendrimer and an insoluble compound, respectively. The structure analysis was carried out with NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2195–2206, 2005  相似文献   

10.
We have developed an expeditious procedure to yield large amounts of orthogonally protected Gal‐β1,3/4‐GlcNAc, which allowed for the systematic introduction of a sulfate group onto the C3/C6 positions of Gal and/or the C6 position of GlcNAc. In particular, the disaccharide precursors were prepared in five or six steps and high overall yield from para‐tolyl‐6‐Otert‐butyldiphenylsilyl‐1‐thio‐β‐D ‐galactopyranoside. After deprotection and sulfation steps, the final products were characterized by using several NMR methods to unambiguously confirm the location of each introduced sulfate group and they were examined for their binding specificity of human galectin‐1 and galectin‐8.  相似文献   

11.
7‐Alkynylated 7‐deazaadenine (pyrrolo[2,3‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides show strong fluorescence which is induced by the 7‐alkynyl side chain (Table 3). A large Stokes shift with an emission around 400 nm is observed when the compound is irradiated at 280 nm. The solvent dependence indicates the formation of a charged transition state. The fluorescence appears when the triple bond is in conjugation with the heterocyclic base. Electron‐donating substituents at the triple bond increase the fluorescence, while electron‐withdrawing residues reduce it. In comparison, the 7‐alkynylated 8‐aza‐7‐deazaadenine (pyrazolo[3,4‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides are rather weakly fluorescent (Table 4). Quantum yields and fluorescence decay times are measured. The synthesis of the 7‐alkynylated 7‐deaza‐2′‐deoxyadenosines and 8‐aza‐7‐deaza‐2′‐deoxyadenosines was performed with 7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 6 ) or 8‐aza‐7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 22 ) as starting materials and employing the Pd0‐catalyzed cross‐coupling reaction with the corresponding alkynes (Schemes 1, 4, and 5). Catalytic hydrogenation of the side chain of the unsaturated nucleosides 5 and 17 afforded the 7‐alkyl derivatives 18 and 19 , respectively, which do not show significant fluorescence (Scheme 2).  相似文献   

12.
The quality of starch‐containing foods may be significantly impaired by contamination with very small amounts of α‐amylase, which can enzymatically hydrolyze the starch and cause viscosity loss. Thus, for quality control, it is necessary to have an analytical method that can measure low amylase activity. We developed a sensitive analytical method for measuring the activity of α‐amylase (from Bacillus subtilis) in starch‐containing foods. The method consists of six steps: (1) crude extraction of α‐amylase by centrifugation and filtration; (2) α‐amylase purification by desalting and anion‐exchange chromatography; (3) reaction of the purified amylase with boron‐dipyrromethene (BODIPY)‐labeled substrate, which releases a fluorescent fragment upon digestion of the substrate, thus avoiding interference from starch derivatives in the sample; (4) stopping the reaction with acetonitrile; (5) reversed‐phase solid‐phase extraction of the fluorescent substrate to remove contaminating dye and impurities; and (6) separation and measurement of BODIPY fluorescence by HPLC. The proposed method could quantify α‐amylase activities as low as 10 mU/mL, which is enough to reduce the viscosity of starch‐containing foods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A simple synthesis of a new, highly fluorescent amino acid and of its protected derivative useful in peptide studies is described. The obtained derivative, N‐[(tert‐butoxy)carbonyl]‐3‐(9,10‐dihydro‐9‐oxoacridin‐2‐yl)‐L ‐alanine ( 6 ), shows intense long‐wave absorption (above 360 nm) and emission (above 400 nm). The quantum yield of fluorescence of the investigated compound is very high, so it can serve as a sensitive analytical probe useful, e.g., in analysis of peptide conformations.  相似文献   

14.
A new route for the synthesis of substituted 8‐methyl‐6‐phenyl‐5,6‐dihydro‐4H‐1,3,2‐benzodioxaphosphocine‐2‐oxide derivatives has been developed by using cinnamic acid and p‐cresol via condensation, reduction, and followed by phosphorylation steps. The title compounds were characterized by IR, 1H, 13C, 31P, and mass spectral studies and elemental analysis. The title compounds have been investigated for their antioxidant activity with respect to their IC50 values using 2,2‐diphenyl‐1‐picrylhydrazyl, NO radical scavenging activities, and reducing power assay. The results obtained from the aforementioned methods revealed that 2‐phenylamino derivatives have shown greater free radical scavenging activity when compared with those of the phenoxy derivatives and is attributed to the presence of secondary amino group, which is able to produce free radicals easily.  相似文献   

15.
The enzymatic ring‐opening polymerization of a 6‐membered cyclic depsipeptide, 3(S)‐isopropylmorpholine‐2,5‐dione in the bulk, was investigated by using lipases as catalysts at 100 and 130°C. Unchanged monomer was recovered in the absence of the enzyme or using an inactivated enzyme, indicating that the present polymerization proceeds through enzymatic catalysis. Poly(3‐isopropylmorpholine‐2,5‐dione) has a carboxylic acid group at one end and a hydroxy group at the other end.  相似文献   

16.
Catalytic base‐induced decarboxylation of polyunsaturated α‐cyano‐β‐methyl acids derived from malonic acid led to the corresponding nitriles 3 (Schemes 2 and 3), 6 (Scheme 5), and 9 (Scheme 6). This decarboxylation occurred with previous deconjugation of the α,β‐alkene moiety of the α‐cyano‐β‐methyl acid, leading to an α‐cyano‐β‐methylene propanoic acid which was easily decarboxylated (see Scheme 2). β‐Methylene intermediates, in some cases, could be isolated; mechanistic pathways are proposed. The nitriles 3, 6 , and 9 were reduced to the sesquiterpene aldehydes 4 (β‐end group), 7 (φ‐end group), and 10 (ψ‐end group), respectively.  相似文献   

17.
Preparation of Lipid II analogues containing an enzymatically uncleavable 1‐C‐glycoside linkage between the disaccharide moiety and the pyrophosphate‐ or pyrophosphonate‐lipid moiety is described. The synthesis of a common 1‐C‐vinyl disaccharide intermediate has been developed that allows easy preparation of both an elongated sugar‐phosphate bond and a sugar‐phosphonate moiety, which are coupled with the polyprenyl phosphate to give the desired molecules. Inhibition studies show how a subtle structural modification results in dramatically different potency toward bacterial transglycosylase (TGase), and the results identify Lipid II‐C‐O‐PP (IC50=25 μM ) as a potential TGase inhibitor.  相似文献   

18.
A convenient and divergent approach was developed to prepare diverse bacterial 3‐deoxy‐d ‐manno‐oct‐2‐ulosonic acid (Kdo) oligosaccharides containing a Kdo‐α‐(2→4)‐Kdo fragment. The orthogonal protected α‐(2→4) linked Kdo‐Kdo disaccharide 3 , serving as a common precursor, was divergently transformed into the corresponding 8‐, 8′‐, and 4′‐hydroxy disaccharides 5 , 7 , and 14 , respectively. Then, these alcohols were glycosylated, respectively, with the 5,7‐O‐di‐tert‐butylsilylene (DTBS) protected Kdo thioglycoside donors 1 or 2 in an α‐stereoselective and high‐yielding manner to afford a range of Kdo oligosaccharides. Finally, removal of all protecting groups of the newly formed glycosides resulted in the desired free Kdo oligomer.  相似文献   

19.
A highly K+‐selective two‐photon fluorescent probe for the in vitro monitoring of physiological K+ levels in the range of 1–100 mM is reported. The two‐photon excited fluorescence (TPEF) probe shows a fluorescence enhancement (FE) by a factor of about three in the presence of 160 mM K+, independently of one‐photon (OP, 430 nm) or two‐photon (TP, 860 nm) excitation and comparable K+‐induced FEs in the presence of competitive Na+ ions. The estimated dissociation constant (Kd) values in Na+‐free solutions (KdOP=(28±5) mM and KdTP=(36±6) mM ) and in combined K+/Na+ solutions (KdOP=(38±8) mM and KdTP=(46±25) mM ) reflecting the high K+/Na+ selectivity of the fluorescent probe. The TP absorption cross‐section (σ2PA) of the TPEF probe+160 mM K+ is 26 GM at 860 nm. Therefore, the TPEF probe is a suitable tool for the in vitro determination of K+.  相似文献   

20.
Biotinylated gradient glycopolymers have been synthesized via RAFT copolymerization of an acrylamide derivative of galactose with N‐acryloylmorpholine in the presence of a biotin CTA. The polymerization was controlled with a linear increase in molecular weights up to 80% conversion. Copolymer chains have a gradient microstructure with an increasing proportion of galactose units towards the ω chain end. The presence of the biotin ligand at the α end of the chains was confirmed by 1H NMR and MALDI‐ToF MS. This strategy based on the use of a biotin‐CTA instead of a post‐polymerization labelling of the chains resulted in a high percentage of α‐functionalized chains (92–95%). Such α‐end‐functionalized glycopolymer chains may interact with streptavidin‐modified surfaces.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号