首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Four silver thiolate clusters, [H3O][(Ag3S3)(BF4)@Ag27(tBuS)18(hfac)6H2O] ⋅ H2O ( 1 ; hfac = hexafluoroacetylacetone), [(Ag3S3)(CF3CO2)@Ag30(tBuS)16(CF3CO2)9(CH3CN)4] ⋅ CF3CO2 ⋅ 4 CH3CN ( 2 ), [(Ag3S3)(MoO4)@Ag30(tBuS)16(CF3CO2)9(CH3CN)4] ⋅ 2 CH3CN ( 3 ), and [(Ag3S3)(CrO4)@Ag30(tBuS)16(CF3CO2)9(CH3CN)4] ⋅ 4 CH3CN ( 4 ), were isolated. They have similar nestlike structures assembled by an [Ag3S3]3− template together with one of the BF4, CF3CO2, MoO42−, or CrO42− anions. Interestingly, the solid-state emissions of 2 – 4 are dependent on the templating anions and are tunable from green to orange and then to red by changing the template from CF3CO2 to MoO42− and to CrO42−, and this may be correlated to the charge transfer between these templates to metal atoms. This work helps to understand the templating role of heteroanions and the relationship between structure and properties.  相似文献   

2.
A novel discrete open high‐nuclearity nest‐like silver thiolate cluster complex, [Ag33S3(StBu)16(CF3COO)9(NO3)(CH3CN)2](NO3) ( 1 ), has been isolated with nitrate and S2? anions acting as structure‐directing templates. Its similar nest‐like structure has been assembled into an extended layer [Ag31S3(StBu)16(NO3)9]n ( 2 ) by adjustment of auxiliary ligand. More interestingly, both complexes exhibit temperature‐dependent luminescence of high sensitivity with a large fluorescence enhancement (12‐fold for 1 , 21‐fold for 2 ), which can be easily recognized by the naked‐eye (dramatic red‐shift Δ=104 nm for 1 , larger Δ=113 nm for 2 at 77 K compared to those at 298 K). The correlation between luminescent thermochromism and temperature‐dependent variation of the coordination modes of template NO3? anion, Ag???S and Ag???Ag distances are also elucidated through variable‐temperature single‐crystal X‐ray crystal structure (VT‐SCXRD) analyses.  相似文献   

3.
《化学:亚洲杂志》2017,12(20):2763-2769
A series of seven new complexes including silver‐thiolate molecular clusters and their covalent supramolecular frameworks have been assembled from the silver carbide precursor Ag2C2 using a C22− pre‐templated approach. Herein, two prototype clusters Ag14(SR)6 and CO3@Agm (SR)10 (R=isopropyl, cyclohexyl or tert ‐butyl; m= 18 or 20) are employed to construct cluster‐based metal–organic frameworks of different dimensions. In particular, both new ellipsoidal tetradecanuclear molecular cluster compounds, namely, Ag14(S‐i Pr)6(CO2CF3)8⋅(DMSO)6 (two polymorphic forms 1 , 2 ) and [Ag14(S‐Cy)6(CO2CF3)8(DMSO)4]⋅(DMSO)3 ( 3 ), and a cluster‐based metal–organic framework {Ag3[Ag14(S‐i Pr)6(CO2CF3)11(H2O)3CH3OH]⋅(H2O)2.5}n ( 4 ) have been isolated and structurally characterized. Furthermore, increased acidity of the reaction mixture afforded three carboxylate‐templated cluster based frameworks: a chain‐like compound {[HN(CH3)2CO]⋅[CO3@Ag18(S‐t Bu)10(NO3)7(DMF)4]⋅DMF}n ( 5 ), as well as two layer‐type compounds, namely, {Ag[CO3@Ag20(S‐i Pr)10(CO2CF3)9(CO2HCF3)(CH3OH)2]}n ( 6 ) and {Ag2[CO3@Ag20(S‐Cy)10(CO2CF3)10(CO2HCF3)2(H2O)2]⋅(H2O)3⋅(CH3OH)3}n ( 7 ) exhibiting sql ‐net characteristics. It is demonstrated that the C≡C2− pre‐template, which draws several Ag+ ions together to form the C2@Agn entity, plays an indispensable role in the syntheses of these compounds. Furthermore, covalent linkage of these nano‐sized silver thiolate clusters from one‐ to three‐dimensions revealed enormous potential for the future development of silver cluster‐based frameworks.  相似文献   

4.
Engineering the surface of the metal clusters with the core structure maintained and tuning their luminescence in a wide range is still a challenge in the nanomaterial research. We modified six mono‐pyridyl ligands with different electronic effects (conjugation effect or induction effect) on a superatomic silver cluster [Ag14(C2B10H10S2)6(CH3CN)8] (denoted as Ag14) through in situ site‐specific surface engineering, and obtained the corresponding clusters [Ag14(C2B10H10S2)6(CH3CN)6(L1/L2)2] (denoted as NC‐1, 2, L1/L2 = 4‐acetylpyridine/ 4‐carboxypyridine) and [Ag14(C2B10H10S2)6(L3/L4/L5/L6)8] (denoted as NC‐3, 4, 5, 6, L3/L4/L5/L6 = 4‐phenylpyridine/4‐(1‐naphthyl)pyridine/9‐(4‐pyridine)anthracene/9‐(4‐pyridine)pyrene). Through the modification of the Ag14 cluster, a wide‐range luminescence from blue to red was realized. This work might provide a practical guide for improving the emission performance of metal clusters via surface engineering.  相似文献   

5.
A new asymmetric ligand, 5‐{3‐[5‐(4‐methylphenyl)‐1,3,4‐oxadiazol‐2‐yl]phenyl}‐2‐(pyridin‐3‐yl)‐1,3,4‐oxadiazole ( L5 ), which contains two oxadiazole rings, was synthesized and characterized. The assembly of symmetric 2,5‐bis(pyridin‐3‐yl)‐1,3,4‐oxadiazole ( L1 ) and asymmetric L5 with AgCO2CF3 in solution yielded two novel AgI complexes, namely catena‐poly[[di‐μ‐trifluoroacetato‐disilver(I)]‐bis[μ‐2,5‐bis(pyridin‐3‐yl)‐1,3,4‐oxadiazole]], [Ag2(C2F3O2)2(C12H8N4O)2]n or [Ag22‐O2CCF3)2( L1 )2]n ( 1 ), and bis(μ3‐5‐{3‐[5‐(4‐methylphenyl)‐1,3,4‐oxadiazol‐2‐yl]phenyl}‐2‐(pyridin‐3‐yl)‐1,3,4‐oxadiazole)tetra‐μ3‐trifluoroacetato‐tetrasilver(I) dichloromethane monosolvate, [Ag4(C2F3O2)4(C22H15N5O2)2]·CH2Cl2 or [Ag23‐O2CCF3)2( L5 )]2·CH2Cl2 ( 2 ). Complex 1 displays a one‐dimensional ring–chain motif, where dinuclear Ag2(CF3CO2)2 units alternate with Ag2( L1 )2 macrocycles. This structure is different from previously reported Ag– L1 complexes with different anions. Complex 2 features a tetranuclear supramolecular macrocycle, in which each ligand adopts a tridentate coordination mode with the oxadiazole ring next to the p‐tolyl ring coordinated and that next to the pyridyl ring free. Two L5 ligands are bound to two Ag1 centres through two oxadiazole N and two pyridyl N atoms to form a macrocycle. The other two oxadiazole N atoms coordinate to the two Ag2 centres of the Ag2(O2CCF3)4 dimer. Each CF3CO2? anion adopts a μ3‐coordination mode, bridging the Ag1 and Ag2 centres to form a tetranuclear silver(I) complex. This study indicates that the donor ability of the bridging oxadiazole rings can be tuned by electron‐withdrawing and ‐donating substituents. The emission properties of ligands L1 and L5 and complexes 1 and 2 were also investigated in the solid state.  相似文献   

6.
Two Ln26@CO3 (Ln=Dy and Tb) cluster‐based lanthanide–transition‐metal–organic frameworks (Ln MOFs) formulated as [Dy26Cu3(Nic)24(CH3COO)8(CO3)11(OH)26(H2O)14]Cl ? 3 H2O ( 1 ; HNic=nicotinic acid) and [Tb26NaAg3(Nic)27(CH3COO)6(CO3)11(OH)26Cl(H2O)15] ? 7.5 H2O ( 2 ) have been successfully synthesized by hydrothermal methods and characterized by IR, thermogravimetric analysis (TGA), elemental analysis, and single X‐ray diffraction. Compound 1 crystallizes in the monoclinic space group Cc with a=35.775(12) Å, b=33.346(11) Å, c=24.424(8) Å, β=93.993(5)°, V=29065(16) Å3, whereas 2 crystallizes in the triclinic space group P with a=20.4929(19) Å, b=24.671(2) Å, c=29.727(3) Å, α=81.9990(10)°, β=88.0830(10)°, γ=89.9940(10)°, V=14875(2) Å3. Structural analysis indicates the framework of 1 is a 3D perovskite‐like structure constructed out of CO3@Dy26 building units and Cu+ centers by means of nicotinic acid ligand bridging. In 2 , however, nanosized CO3@Tb26 units and [Ag3Cl]2+ centers are connected by Nic? bridges to give rise to a 2D structure. It is worth mentioning that this kind of 4d–4f cluster‐based MOF is quite rare as most of the reported analogous compounds are 3d–4f ones. Additionally, the solid‐state emission spectra of pure compound 2 at room temperature suggest an efficient energy transfer from the ligand Nic? to Tb3+ ions, which we called the “antenna effect”. Compound 2 shows a good two‐photon absorption (TPA) with a TPA coefficient of 0.06947 cm GM?1 (1 GM=10?50 cm4 s photon?1), which indicates that compound 2 might be a good choice for third‐order nonlinear optical materials.  相似文献   

7.
Introduction So far, considerable attention has been paid to mag-netic interaction between two different metal ions.1-3 As a potential bridging ligand, thiocyanate can coordinate to a harder metal center with N atom and softer ones with S atom at the same time, resulting in the formation of small ferromagnetic coupling.2 On the other hand, the Fe(III) atom is a good candidate as a hard acid and Ag(I) is a good candidate as a soft acid, so that the Fe(III) centers could be expected to conn…  相似文献   

8.
Rate coefficients and/or mechanistic information are provided for the reaction of Cl‐atoms with a number of unsaturated species, including isoprene, methacrolein ( MACR ), methyl vinyl ketone ( MVK ), 1,3‐butadiene, trans‐2‐butene, and 1‐butene. The following Cl‐atom rate coefficients were obtained at 298 K near 1 atm total pressure: k(isoprene) = (4.3 ± 0.6) × 10?10cm3 molecule?1 s?1 (independent of pressure from 6.2 to 760 Torr); k( MVK ) = (2.2 ± 0.3) × 10?10 cm3 molecule?1 s?1; k( MACR ) = (2.4 ± 0.3) × 10?10 cm3 molecule?1 s?1; k(trans‐2‐butene) = (4.0 ± 0.5) × 10?10 cm3 molecule?1 s?1; k(1‐butene) = (3.0 ± 0.4) × 10?10 cm3 molecule?1 s?1. Products observed in the Cl‐atom‐initiated oxidation of the unsaturated species at 298 K in 1 atm air are as follows (with % molar yields in parentheses): CH2O (9.5 ± 1.0%), HCOCl (5.1 ± 0.7%), and 1‐chloro‐3‐methyl‐3‐buten‐2‐one (CMBO, not quantified) from isoprene; chloroacetaldehyde (75 ± 8%), CO2 (58 ± 5%), CH2O (47 ± 7%), CH3OH (8%), HCOCl (7 ± 1%), and peracetic acid (6%) from MVK ; CO (52 ± 4%), chloroacetone (42 ± 5%), CO2 (23 ± 2%), CH2O (18 ± 2%), and HCOCl (5%) from MACR ; CH2O (7 ± 1%), HCOCl (3%), acrolein (≈3%), and 4‐chlorocrotonaldehyde (CCA, not quantified) from 1,3‐butadiene; CH3CHO (22 ± 3%), CO2 (13 ± 2%), 3‐chloro‐2‐butanone (13 ± 4%), CH2O (7.6 ± 1.1%), and CH3OH (1.8 ± 0.6%) from trans‐2‐butene; and chloroacetaldehyde (20 ± 3%), CH2O (7 ± 1%), CO2 (4 ± 1%), and HCOCl (4 ± 1%) from 1‐butene. Product yields from both trans‐2‐butene and 1‐butene were found to be O2‐dependent. In the case of trans‐2‐butene, the observed O2‐dependence is the result of a competition between unimolecular decomposition of the CH3CH(Cl)? CH(O?)? CH3 radical and its reaction with O2, with kdecomp/kO2 = (1.6 ± 0.4) × 1019 molecule cm?3. The activation energy for decomposition is estimated at 11.5 ± 1.5 kcal mol?1. The variation of the product yields with O2 in the case of 1‐butene results from similar competitive reaction pathways for the two β‐chlorobutoxy radicals involved in the oxidation, ClCH2CH(O?)CH2CH3 and ?OCH2CHClCH2CH3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 334–353, 2003  相似文献   

9.
The reaction of {(HNEt3)2[Ag10(tBuC6H4S)12]}n, Ag2O, Na2MoO4, and m‐methoxybenzoic acid (Hmbc) in CH3OH/CH2Cl2 led to yellow crystals of [Ag4S4 (MoO4)5@Ag66] (SD/Ag70b; SD=SunDi) only, while in the presence of DMF, additional dark‐red crystals of [Ag10@ (MoO4)7@Ag60] (SD/Ag70a) were obtained. SD/Ag70b consists of five MoO42? ions wrapped by a shell of 66 Ag atoms, while SD/Ag70a contains a rare Ag10 kernel consisting of five tetrahedra sharing faces and edges, surrounded by seven MoO42? ions enclosed in a shell of 60 Ag atoms. The formation of the Ag10 kernel originates from a reduction reaction during the self‐assembly process that involves DMF. This work provides the structural information of a unique Ag10 kernel (five fused Ag4 tetrahedra) and paves an avenue to trap elusive silver species with hierarchical multi‐shell silver nanocluster assemblies with the help of anion templates.  相似文献   

10.
Continuous metal–organic framework‐type Co3(HCOO)6 intergrown films with a one‐dimensional zigzag channel system and pore aperture of 5.5 Å are prepared by secondary growth on preseeded macroporous glass‐frit disks and silicon wafers. The adsorption behavior of CO2 or CH4 single gases on the Co3(HCOO)6 membrane is investigated by in situ IR spectroscopy. It is shown that the isosteric heats of adsorption for CO2 (17.7 kJ mol?1) and CH4 (14.4 kJ mol?1) do not vary with increasing amount of adsorbed gases. The higher value of isosteric heat for CO2 is an indication of the stronger interaction between the CO2 and the Co3(HCOO)6 membrane. The Co3(HCOO)6 membrane is studied by binary gas permeation of CO2 and CH4 at different temperatures (0, 25, and 60 °C). The membrane has CO2/CH4 selectivity with a separation factor higher than 10, which is due to the unique structure and molecular sieving effect. Upon increasing the temperature from 0 to 60 °C, the preferred permeance of CO2 over CH4 is increased from 1.70×10?6 to 2.09×10?6 mol m?2 s?1 Pa?1, while the separation factor for CO2/CH4 shows a corresponding decrease from 15.95 to 10.37. The effective pore size of the Co3(HCOO)6 material combined with the pore shape do not allow the two molecules to pass simultaneously, and once the CO2 molecules are diffused in the micropores, the CH4 is blocked. The supported Co3(HCOO)6 membrane retains high mechanical stability after a number of thermal cycles.  相似文献   

11.
A series of 13 silver(I) double and multiple salts containing 1,3‐butadiynediide, C42?, were synthesized by dissolving the silver carbide Ag2C4 in a concentrated aqueous solution of one or more of the silver salts AgNO3, AgCF3CO2, AgC2F5CO2, AgF, AgBF4, and AgPF6. The 1,3‐butadiynediide anion invariably adopts a μ44 coordination mode in these compounds, which indicates that the Ag4?C?C? C?C?Ag4 moiety can be used as a new type of metalloligand supramolecular synthon for the construction of coordination networks. Fine‐tuning with various ancillary anionic ligands caused the Ag4 aggregate at each ethynide terminus to adopt a butterfly‐shaped, planar, or barblike configuration, within which the silver–ethynide interactions can be classified into three types: σ, π, and mixed (σ,π). The effect of coexisting nitrile ligands and quaternary ammonium salts on supramolecular assembly with the above synthon was also explored. The hydrolysis of PF6? and BF4? led to the formation of the quadruple salt Ag2C4?4 AgNO3?AgPF2O2?Ag3PO4 and a novel (F)2(H2O)18 hydrogen‐bonded tape in the triple salt Ag2C4?2 AgF? 10 AgC2F5CO2?CH3CN?12 H2O, respectively. The largest silver–ethynide cluster aggregate described to date, (C4)3@Ag18, occurs in 3 Ag2C4? 12 AgC2F5CO2?5[(BnMe3N)C2F5CO2]? 4 H2O (Bn=benzyl).  相似文献   

12.
The trinuclear copper complex, [Cu33-OH)(CTMB)3(NO3)2(CH3CN)2]·5CH3CN·H2O (1) {CTMB = cyclohexotriazole-3-(4-methoxybenzamide)}, has been prepared by mixing Cu(NO3)2·2.5H2O and CHMBH {CHMBH = N,N′-cyclohexane-1,2-diylidene-bis(4-methoxybenzoylhydrazide)} in acetonitrile under ambient conditions. Compound 1 was characterized by IR and UV–visible spectroscopies as well as elemental analyses. X-ray crystallography shows that the cluster contains a {Cu33-OH)} core supported by three triazole-based Schiff base ligands. Each Cu is bound to the 2-N of one triazole ring and the 1-N of another. However, the coordination sphere of each Cu is different, one is five-coordinate and the other two are six-coordinate and bridged by a NO3 group. The six-coordinate sites are different, one has a terminal NO3 and the other a MeCN ligand. Magnetic measurements revealed the presence of isotropic and antisymmetric exchange between the copper(II) centers. The data were analyzed using the Hamiltonian containing isotropic exchange for an isosceles triangle together with antisymmetric exchange: H = –J1(S1S2 + S2S3)?J2S1S3 + G[S1 × S2 + S2 × S3 + S3 × S1]. Compound 1 exhibits strong antiferromagnetic coupling with J1 = ?180 and J2 = ?118 cm?1 and antisymmetric exchange with Gz = 15 cm?1. Stopped flow spectrophotometric studies show that the formation of 1 occurs in three distinct phases and the kinetics of each phase has been determined.  相似文献   

13.
Chiral assembly and asymmetric synthesis are critically important for the generation of chiral metal clusters with chiroptical activities. Here, a racemic mixture of [K(CH3OH)2(18‐crown‐6)]+[Cu5(StBu)6]? ( 1?CH3OH ) in the chiral space group was prepared, in which the chiral red‐emissive anionic [Cu5(StBu)6]? cluster was arranged along a twofold screw axis. Interestingly, the release of the coordinated CH3OH of the cationic units turned the chiral 1?CH3OH crystal into a mesomeric crystal [K(18‐crown‐6)]+[Cu5(StBu)6]? ( 1 ), which has a centrosymmetric space group, by adding symmetry elements of glide and mirror planes through both disordered [Cu5(StBu)6]? units. The switchable chiral/achiral rearrangement of [Cu5(StBu)6]? clusters along with the capture/release of CH3OH were concomitant with an intense increase/decrease in luminescence. We also used cationic chiral amino alcohols to induce the chiral assembly of a pair of enantiomers, [d /l ‐valinol(18‐crown‐6)]+[Cu5(StBu)6]? ( d /l ‐Cu5V ), which display impressive circularly polarized luminescence (CPL) in contrast to the CPL‐silent racemic mixture of 1?CH3OH and mesomeric 1 .  相似文献   

14.
The reaction of N‐rich pyrazinyl triazolyl carboxyl ligand 3‐(4‐carboxylbenzene)‐5‐(2‐pyrazinyl)‐1H‐1,2,4‐triazole (H2cbptz) with MnCl2 afforded 3D cationic metal–organic framework (MOF) [Mn2(Hcbptz)2(Cl)(H2O)]Cl ? DMF ? 0.5 CH3CN ( 1 ), which has an unusual (3,4)‐connected 3,4T1 topology and 1D channels composed of cavities. MOF 1 has a very polar framework that contains exposed metal sites, uncoordinated N atoms, narrow channels, and Cl? basic sites, which lead to not only high CO2 uptake, but also remarkably selective adsorption of CO2 over N2 and CH4 at 298–333 K. The multiple CO2‐philic sites were identified by grand canonical Monte Carlo simulations. Moreover, 1 shows excellent stability in natural air environment. These advantages make 1 a very promising candidate in post‐combustion CO2 capture, natural‐gas upgrading, and landfill gas‐purification processes.  相似文献   

15.
The antimony aminoalkoxide and aminothiolates Sb(ECH2CH2NMe2)3 [E = O ( 1 ), S ( 2 )] were synthesized and their ability to form adducts with other metal moieties investigated. Compound 1 forms 1:1 adducts with NiI2 ( 3 ) and M(acac)2 [M = Cd ( 4 ), Ni ( 5 )], while 2 undergoes ligand exchange with AlMe3 to afford Me2AlSCH2CH2NMe2 ( 6 ). The structures of 2 – 4 and 6 were determined. Compound 2 incorporates three S, N‐chelating ligands though the interaction with nitrogen is weaker than in analogous alkoxide complexes. Product 3 reveals one iodine has migrated from nickel to antimony, and all three alkoxide ligands bridge the two metals through μ2‐O atoms. In contrast, in 4 , only one alkoxide links the antimony and cadmium. Compound 6 adopts the same structure, a chelating S,N ligand generating a tetrahedral center at aluminum, as known tBu2AlSCH2CH2NR2 species (R = Me, Et).  相似文献   

16.
Crystallization of [Ag14(C?CtBu)12Cl][BF4] and different polyoxometalates in organic solvents yields a series of new intercluster compounds: [Ag14(C?CtBu)12Cl(CH3CN)]2[W6O19] ( 1 ), (nBu4N)[Ag14(C?CtBu)12Cl(CH3CN)]2[PW12O40] ( 2 ), and [Ag14(C?CtBu)12Cl]2[Ag14(C?CtBu)12Cl(CH3CN)]2[SiMo12O40] ( 3 ). Applying the same technique to a system starting from polymeric {[Ag3(C?CtBu)2][BF4]?0.6 H2O}n and the polyoxometalate (nBu4N)2[W6O19] results in the formation of [Ag14(C?CtBu)12(CH3CN)2][W6O19] ( 4 ). Here, the Ag14 cluster is generated from polymeric {[Ag3(C?CtBu)2][BF4]?0.6 H2O}n during crystallization. In a similar way, [Ag15(C?CtBu)12(CH3CN)5][PW12O40] ( 5 ) has been obtained from {[Ag3(C?CtBu)2][BF4]?0.6 H2O}n and (nBu4N)3[PW12O40]. The use of charged building blocks was intentional, because at these conditions the contribution of long‐range Coulomb interactions would benefit most from full periodicity of the intercluster compound, thus favoring formation of well‐crystalline materials. The latter has been achieved, indeed. However, as a most conspicuous feature, equally charged species aggregate, which demonstrates that the short‐range interactions between the “surfaces” of the clusters represent the more powerful structure direction forces than the long‐range Coulomb bonding. This observation is of significant importance for understanding the mechanisms underlying self‐organization of monodisperse and structurally well‐defined particles of nanometer size.  相似文献   

17.
Novel Silver‐Telluride Clusters Stabilised with Bidentate Phosphine Ligands: Synthesis and Structure of {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)}, [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl], and [Ag38Te13(Te t Bu)12(Ph2P(CH2)2PPh2)3] Bidentate phosphine ligands have been found effective to stabilise polynuclear cores containing silver and chalcogenide ligands. They can act as intra and intermolecular bridges between the silver centres. The clusters {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)} ( 1 ), [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl] ( 2 ), and [Ag38Te13(TetBu)12(Ph2P(CH2)2PPh2)3] ( 3 ) have been prepared and their molecular structure determined. Compound 2 and 3 are molecular structures with separated cluster cores while 1 forms a polymeric chain bridged by phosphine ligands. ( 1 : space group P21/c (No. 14), Z = 4, a = 3518,1(7) pm, b = 2260,6(5) pm, c = 3522,1(7) pm, β = 119,19(3)°; 2 : space group R3 (No. 148), Z = 6, a = b = 3059,4(4) pm, c = 5278,8(9) pm; 3: space group Pccn (No. 56), Z = 4, a = 3613,0(9) pm, b = 3608,6(7) pm, c = 2153,5(8) pm)  相似文献   

18.
The synergistic Ag+/X2 system (X=Cl, Br, I) is a very strong, but ill‐defined oxidant—more powerful than X2 or Ag+ alone. Intermediates for its action may include [Agm(X2)n]m+ complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: ( A )Ag‐I2‐Ag( A ), [Ag2(I2)4]2+( A ?)2 and [Ag2(I2)6]2+( A ?)2?(I2)x≈0.65 form by reaction of Ag( A ) ( A =Al(ORF)4; RF=C(CF3)3) with diiodine (single crystal/powder XRD, Raman spectra and quantum‐mechanical calculations). The molecular ( A )Ag‐I2‐Ag( A ) is ideally set up to act as a 2 e? oxidant with stoichiometric formation of 2 AgI and 2 A ?. Preliminary reactivity tests proved this ( A )Ag‐I2‐Ag( A ) starting material to oxidize n‐C5H12, C3H8, CH2Cl2, P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that ( A )Ag‐I2‐Ag( A ) will serve as an easily in bulk accessible, well‐defined, and very potent oxidant with multiple applications.  相似文献   

19.
A ferrocene‐based dithiol 1,1′‐[fc(C{O}OCH2CH2SH)2] has been prepared and treated with a AgI salt to form the stable dithiolate compound [fc(C{O}OCH2CH2SAg)2]n (fc=[Fe(η5‐C5H4)2]). This is used as a reagent for the preparation of the nanocluster [Ag74S19(dppp)6(fc(C{O}OCH2CH2S)2)18] which was obtained in good yield (dppp=1,3‐bis(diphenylphosphino)propane).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号