首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radical cations of bis(triarylamine)s, 3 and 4 , in which the triarylamine redox centers are bridged by an ortho ‐phenylene and ortho ‐carborane cluster, respectively, have been prepared to elucidate the difference in intramolecular charge/spin‐transfer (ICT/IST) pathway owing to the two different bridging units affording similar geometrical arrangements between the redox centers. Electrochemistry, absorption spectroscopy, VT‐ESR spectroscopy, and DFT calculations reveal that 3 .+ and 4 .+ are classified into class II and class I mixed‐valence systems, respectively, and therefore, through‐bond and through‐space mechanisms are dominant for the ICT/IST phenomena in 3 .+ and 4 .+, respectively. Moreover, SQUID measurements for dicationic species provide the fact that virtually no spin‐exchange interaction is observed for spins in 4 2+, while the antiferromagnetic interaction for spins in 3 2+, in accordance with the existence of a conjugation pathway for the ortho ‐phenylene bridge.  相似文献   

2.
We present the synthesis and switching studies of systems with two photochromic dihydroazulene (DHA) units connected by a phenylene bridge at either para or meta positions, which correspond to a linear or cross‐conjugated pathway between the photochromes. According to UV/Vis absorption and NMR spectroscopic measurements, the meta‐phenylene‐bridged DHA–DHA exhibited sequential light‐induced ring openings of the two DHA units to their corresponding vinylheptafulvenes (VHFs). Initially, the VHF–DHA species was generated, and, ultimately, after continued irradiation, the VHF–VHF species. Studies in different solvents and quantum chemical calculations indicate that the excitation of DHA–VHF is no longer a local DHA excitation but a charge‐transfer transition that involves the neighboring VHF unit. For the linearly conjugated para‐phenylene‐bridged dimer, electronic communication between the two units is so efficient that the photoactivity is reduced for both the DHA–DHA and DHA–VHF species, and DHA–DHA, DHA–VHF, and VHF–VHF were all present during irradiation. In all, by changing the bridging unit, we can control the degree of stepwise photoswitching.  相似文献   

3.
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes.  相似文献   

4.
Stable meta‐ and para‐phenylene bridged porphyrin meso‐oxy radical dimers and their NiII and ZnII complexes were synthesized. All the dimers exhibited optical and electrochemical properties similar to the corresponding porphyrin meso‐oxy radical monomers, indicating small electronic interaction between the two spins. Intramolecular spin‐spin interaction through the π‐spacer was determined to be J/kB=?15.9 K for m‐phenylene bridged ZnII porphyrin dimer. The observed weak antiferromagnetic interaction has been attributed to less effective conjugation between the porphyrin radical and linking π‐spacer due to large dihedral angle. In the case of ZnII complexes, both para‐ and meta‐phenylene bridged dimers formed 1D‐chain in solutions and in the solid states through Zn‐O coordination.  相似文献   

5.
A theoretical study of 2‐Se‐(2‐methyl‐2‐propenyl)‐1‐benzoic acid was carried out to investigate the molecular and electronic structure of this molecule, using the B3LYP density functional theory (DFT) method with the 6‐311+G** basis set. The optimized geometry of the molecule was obtained for the ortho, meta, and para isomers of the complex. In addition, the theoretical vibrational spectrum is presented, and thermal corrections in the limit of 100–1,000 K are discussed using the Shomate thermodynamic equations. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

6.
Electron delocalization of new mixed‐valent (MV) systems with the aid of lateral metal chelation is reported. 2,2′‐Bipyridine (bpy) derivatives with one or two appended di‐p‐anisylamino groups on the 5,5′‐positions and a coordinated [Ru(bpy)2] (bpy=2,2′‐bipyridine), [Re(CO)3Cl], or [Ir(ppy)2] (ppy=2‐phenylpyridine) component were prepared. The single‐crystal molecular structure of the bis‐amine ligand without metal chelation is presented. The electronic properties of these complexes were studied and compared by electrochemical and spectroscopic techniques and DFT/TDDFT calculations. Compounds with two di‐p‐anisylamino groups were oxidized by a chemical or electrochemical method and monitored by near‐infrared (NIR) absorption spectral changes. Marcus–Hush analysis of the resulting intervalence charge‐transfer transitions indicated that electron coupling of these mixed‐valent systems is enhanced by metal chelation and that the iridium complex has the largest coupling. TDDFT calculations were employed to interpret the NIR transitions of these MV systems.  相似文献   

7.
The title (1H‐pyrrol‐2‐yl)­pyridines, C9H8N2, substituted at the ortho, meta, and para positions of the pyridine ring all have hydrogen‐bonded arrangements with geometrically similar, nearly linear, N(pyrrole)—H⋯N(pyridine) hydrogen bonds of average length. The graph sets for the ortho, meta, and three para polymorphs are R(10), C(6), C(7), C(7), and R(28), respectively.  相似文献   

8.
Two, symmetrical, mixed‐valence (MV), complex cations—{[Mo2(DAniF)3]2(μ‐oxamidate)}+ ( 1 +) and {Mo2(DAniF)3]2(μ‐dithiooxamidate)}+ ( 2 +; DAniF=N,N′‐di(p‐anisyl)formamidinate)—are significantly differentiated in terms of electronic coupling between the two [Mo2] units. For 1 + the intervalence (IV) charge‐transfer band in the near‐IR spectrum is truncated in half on the low‐energy side as predicted for MV compounds at the Class II–III limit (2Hab/λ=1; for which Hab=electronic coupling matrix element and λ=reorganization energy). In contrast, the very strongly coupled analogue 2 +, as indicated by 2Hab/λ=3.5 (> >1), exhibits a higher energy and more symmetrical IV band. As rare examples, this pair of MV species shows distinct optical behaviors for MV systems crossing the Class III region. Optical analysis and DFT calculations are carried out to elucidate the transformation from vibronic to electronic vertical transition.  相似文献   

9.
The efficient synthesis of tripodal platforms based on tetraphenylmethane with three acetyl‐protected thiol groups in either meta or para positions relative to the central sp3 carbon for deposition on Au (111) surfaces is reported. These platforms are intended to provide a vertical arrangement of the substituent in position 4 of the perpendicular phenyl ring and an electronic coupling to the gold substrate. The self‐assembly features of both derivatives are analyzed on Au (111) surfaces by low‐temperature ultra‐high‐vacuum STM, high‐resolution X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, and reductive voltammetric desorption studies. These experiments indicated that the meta derivative forms a well‐ordered monolayer, with most of the anchoring groups bound to the surface, whereas the para derivative forms a multilayer film with physically adsorbed adlayers on the chemisorbed para monolayer. Single‐molecule conductance values for both tripodal platforms are obtained through an STM break junction experiment.  相似文献   

10.
The title complex, [Cu(C6H4N3)]n, was synthesized by the reaction of cupric nitrate, 1H‐benzotriazole (BTAH) and aqueous ammonia under hydrothermal conditions. The asymmetric unit contains three crystallographically independent CuI cations and two 1H‐benzotriazolate ligands. Two of the CuI cations, one with a linear two‐coordinated geometry and one with a four‐coordinated tetrahedral geometry, are located on sites with crystallographically imposed twofold symmetry. The third CuI cation, with a planar three‐coordinated geometry, is on a general position. Two CuI cations are doubly bridged by two BTA ligands to afford a noncentrosymmetric planar [Cu2(BTA)2] subunit, and two [Cu2(BTA)2] subunits are arranged in an antiparallel manner to form a centrosymmetric [Cu2(BTA)2]2 secondary building unit (SBU). The SBUs are connected in a crosswise manner via the sharing of four‐coordinated CuI cations, Cu—N bonding and bridging by two‐coordinate CuI cations, resulting in a one‐dimensional chain along the c axis. These one‐dimensional chains are further linked by C—H...π and weak van der Waals interactions to form a three‐dimensional supramolecular architecture.  相似文献   

11.
The competition between benzylic cleavage (simple bond fission [SBF]) and retro‐ene rearrangement (RER) from ionised ortho, meta and para RC6H4OH and RC6H4OCH3 (R = n‐C3H7, n‐C4H9, n‐C5H11, n‐C7H15, n‐C9H19, n‐C15H31) is examined. It is observed that the SBF/RER ratio is significantly influenced by the position of the substituent on the aromatic ring. As a rule, phenols and anisoles substituted by an alkyl group in meta position lead to more abundant methylene‐2,4‐cyclohexadiene cations (RER fragmentation) than their ortho and para homologues. This ‘meta effect’ is explained on the basis of energetic and kinetic of the two reaction channels. Quantum chemistry computations have been used to provide estimate of the thermochemistry associated with these two fragmentation routes. G3B3 calculation shows that a hydroxy or a methoxy group in the meta position destabilises the SBF and stabilises the RER product ions. Modelling of the SBF/RER intensities ratio has been performed assuming two single reaction rates for both fragmentation processes and computing them within the statistical RRKM formalism in the case of ortho, meta and para butyl phenols. It is clearly demonstrated that, combining thermochemistry and kinetics, the inequality (SBF/RER)meta < (SBF/RER)ortho < (SBF/RER)para holds for the butyl phenols series. It is expected that the ‘meta effect’ described in this study enables unequivocal identification of meta isomers from ortho and para isomers not only of alkyl phenols and alkyl anisoles but also in other alkyl benzene series. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Formation of the O?O bond is considered the critical step in oxidative water cleavage to produce dioxygen. High‐valent metal complexes with terminal oxo (oxido) ligands are commonly regarded as instrumental for oxygen evolution, but direct experimental evidence is lacking. Herein, we describe the formation of the O?O bond in solution, from non‐heme, N5‐coordinate oxoiron(IV) species. Oxygen evolution from oxoiron(IV) is instantaneous once meta‐chloroperbenzoic acid is administered in excess. Oxygen‐isotope labeling reveals two sources of dioxygen, pointing to mechanistic branching between HAT (hydrogen atom transfer)‐initiated free‐radical pathways of the peroxides, which are typical of catalase‐like reactivity, and iron‐borne O?O coupling, which is unprecedented for non‐heme/peroxide systems. Interpretation in terms of [FeIV(O)] and [FeV(O)] being the resting and active principles of the O?O coupling, respectively, concurs with fundamental mechanistic ideas of (electro‐) chemical O?O coupling in water oxidation catalysis (WOC), indicating that central mechanistic motifs of WOC can be mimicked in a catalase/peroxidase setting.  相似文献   

13.
meta‐ and para‐Phenylenediamine‐fused nickel(II) porphyrin dimers were synthesized by SNAr reaction of meso,β,β‐trichloro nickel(II) porphyrin with meta‐ and para‐phenylenediamines and subsequent Pd‐catalyzed intramolecular C?H arylation. Their tetrachlorinated dication diradicals are very stable, allowing SQUID magnetometry and revealing clear open‐shell characters for both meta and para isomers with ferro‐ and anti‐ferromagnetic interactions, respectively. The nitrogen analogue of Thiele's hydrocarbon usually displays predominant closed‐shell nature but its hidden diradical characters increase either in a twisted conformation or upon insertion of an additional phenylene spacer. The observed distinct diradical nature of the para‐congener indicates that diradical properties can be enhanced also by efficient spin delocalization.  相似文献   

14.
A novel series of well‐defined alternating poly[2,7‐(9,9‐dihexylfluorenyl)‐alt‐pyridinyl] (PDHFP) with donor‐acceptor repeat units were synthesized using palladium (0)‐catalyzed Suzuki cross‐coupling reactions in good to high yields. In this series of alternating polymers, 2, 7‐(9,9‐dihexylfluorenyl) was used as the light emitting unit, and the electron deficient pyridinyl unit was employed to provide improved electron transportation. These polymers were characterized by 1H‐NMR and 13C‐NMR, gel permeation chromatography (GPC), thermal analyses, and UV‐vis and fluorescence spectroscopy. The glass transition temperature of copolymers in nitrogen ranged from 110 to 148 °C, and the copolymers showed high thermal stabilities with high decomposition temperatures in the range of 350 to 390 °C in air. The difference in linkage position of pyridinyl unit in the polymer backbone has significant effects on the electronic and optical properties of polymers in solution and in film phases. Meta‐linkage (3,5‐ and 2,6‐linkage) of pyridinyl units in the polymer backbone is more favorable to polymer for pure blue emission and prevention of aggregation of polymer chain than para‐linkage (2,5‐linkage) of the pyridinyl units. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4792–4801, 2004  相似文献   

15.
Bis(phenylethynyl)pyridylcarboxamides with amide side chains at the para position of the NH2 group possess strong solvatochromic properties compared with the meta analogues. Fluorescence binding titrations show that these probes exhibit remarkable fluorescence turn‐on responses upon interacting with the human telomeric G‐quadruplex (h‐TELO). Förster resonance energy transfer melting analysis shows the high selectivity of these probes for h‐TELO over duplex DNA. Isothermal titration calorimetry, as well as UV/Vis and fluorescence spectroscopy studies, show that the meta analogue has a twofold binding affinity for h‐TELO over the para analogue. The noncovalent interaction of these small‐molecule probes with h‐TELO has been used to regulate the assembly of novel supramolecular nanoarchitectures.  相似文献   

16.
Radical cations of bis(dianisylamino)-terminated oligo(p-phenylene)s (OPPs) with up to five phenyl moieties were characterized by means of UV/Vis-NIR and variable-temperature ESR spectroscopy to investigate the bridge-length-dependence on intramolecular charge/spin self-exchange between two nitrogen redox-active centers. Additionally, a comparative study between bis(dianisylamine)-based mixed-valence (MV) radical cations connected by p-terphenylene and hexa-peri-hexabenzocoronene (HBC) π-bridging units also provided information on the influence of extended π-conjugation over the OPP-bridge due to the planarization between adjacent phenylene units on the strength of electronic coupling. The present study on a homologous series of organic MV systems clarifies the attenuation factor through the OPP-bridge and the linear relationship between the electrochemical potential splitting and the electronic coupling in the region of intermediate-to-weak electronic coupling regime.  相似文献   

17.
Are different B(boron)–π–N(nitrogen) embedded patterns to bring about significant different (opto)electronic properties for the same macrocyclic molecular backbone? A series of B–π–N‐embedded alternate‐metapara‐linked cyclophanes 1 – 3 have been prepared and characterized as a new class of ambipolar π‐conjugated B–π–N macrocycles. The answer to the opening question is yes. These macrocycles revealed the intramolecular charge transfer in the oxidized states and the intriguing photophysical proprerties in accordance with the embedded patterns, suggesting the electronic structures are tunable by introducing multiple B–π–N moieties.  相似文献   

18.
We have investigated the photophysical properties of star‐shaped oligothiophenes with three terthiophene arms (meta to each other, S3 ) or six terthiophene arms (ortho‐, meta‐, and para‐arranged, S6 ) connected to an ethynylbenzene core to elucidate the relationship between their molecular structure and electronic properties by using a combination of ensemble and single‐molecule spectroscopic techniques. We postulate two different conformations for molecules S3 and S6 on the basis of the X‐ray structure of hexakis(5‐hexyl‐2‐thienlyethynyl)benzene and suggest the coexistence of these conformers by using spectroscopic methods. From the steady‐state spectroscopic data of compound S6 , we show that the exciton is delocalized over the core structure, but that the meta‐linkage in compound S3 prevents the electronic communication between the arms. However, in single‐molecule spectroscopic measurements, we observed that some molecules of compound S3 showed long fluorescence lifetimes (about 1.4 ns) in the fluorescence‐intensity trajectories, which indicated that π electrons were delocalized along the meta linker. Based on these observations, we suggest that the delocalized exciton is intensely sensitive towards the dihedral angle between the core and the adjacent thiophene ring, as well as to the substituted position of the terthiophene arms. Our results highlight that the fluorescence lifetimes of compounds S3 and S6 are strongly correlated with the spatial location of their excitons, which is mainly affected by their conformation, that is, whether the innermost thiophene rings are facing each other or not. More interestingly, we observed that the difference between the degrees of ring‐torsional flexibility of compounds S3 and S6 results in their sharply contrasting fluorescence properties, such as a change in fluorescence intensity as a function of temperature.  相似文献   

19.
A study of three isomeric compounds containing a phenolic moiety attached to the nitrogen‐rich triazolo–triazole bicycle is presented. In the three isomers, the phenolic OH group is in the ortho, meta and para positions. The crystal structure analysis of the meta isomer (C10H9N5O) shows that the 2H‐tautomer is present in the crystal and that the molecule adopts a substantially planar geometry. However, the conformation found in the crystal is different compared to the monoprotonated cation of the same compound previously investigated in several salts. The packing of the meta isomer is driven by the formation of strong hydrogen bonds and shows the formation of infinite planar ribbons, parallel to a, formed around 21 crystallographic axes. The three isomers were tested against some cancer cell lines and also against normal cell lines. The ortho isomer shows a weak antiproliferative activity, the meta isomer shows significant antiproliferative activity against some cancer lines and no activity against healthy cell lines, and the para isomer is active against all the tested cell lines.  相似文献   

20.
Understanding the details of the electronic structure in face‐to‐face arranged tetrathiafulvalenes (TTFs) is very important for the design of supramolecular functional materials and superior conductive organic materials. This article is a comprehensive study of the interactions among columnar stacked TTFs using trimeric (trimer) and tetrameric (tetramer) TTFs linked by alkylenedithio groups (‐S(CH2)nS‐, n=1–4) as models of triple‐ and quadruple‐decker TTF arrays. Single‐crystal X‐ray analyses of neutral trimeric TTFs revealed that the three TTF moieties are oriented in a zigzag arrangement. Cyclic voltammetry measurements (CV) reveal that the trimer and tetramer exhibited diverse reversible redox processes with multi‐electron transfers, depending on the length of the ‐S(CH2)nS‐ units and substituents. The electronic spectra of the radical cations, prepared by electrochemical oxidation, showed charge resonance (CR) bands in the NIR/IR region (1630–1850 nm), attributed to a mixed valence (MV) state of the triple‐ and quadruple‐decker TTF arrays. In the trimeric systems, the dicationic state (+2; 0.66 cation per TTF unit) was found to be a stable state, whereas the monocationic state (+1) was not observed in the electronic spectra. In the tetrameric system, substituent‐dependent redox processes were observed. Moreover, π‐trimers and π‐tetramers, which show a significant Davydov blueshift in the spectra, are formed in the tricationic (trimer) and tetracationic (tetramer) state. In addition, these attractive interactions are strongly dependent on the length of the linkage unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号