首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Enabled by the reversible conversion between Li2O2 and O2, Li–O2 batteries promise theoretical gravimetric capacities significantly greater than Li‐ion batteries. The poor cycling performance, however, has greatly hindered the development of this technology. At the heart of the problem is the reactivity exhibited by the carbon cathode support under cell operation conditions. One strategy is to conceal the carbon surface from reactive intermediates. Herein, we show that long cyclability can be achieved on three dimensionally ordered mesoporous (3DOm) carbon by growing a thin layer of FeOx using atomic layer deposition (ALD). 3DOm carbon distinguishes itself from other carbon materials with well‐defined pore structures, providing a unique material to gain insight into processes key to the operations of Li–O2 batteries. When decorated with Pd nanoparticle catalysts, the new cathode exhibits a capacity greater than 6000 mAh gcarbon−1 and cyclability of more than 68 cycles.  相似文献   

9.
10.
11.
12.
13.
We present an automated microfluidic platform for in‐flow studies of visible‐light photoredox catalysis in liquid or gas–liquid reactions at the 15 μL scale. An oscillatory flow strategy enables a flexible residence time while preserving the mixing and heat transfer advantages of flow systems. The adjustable photon flux made possible with the platform is characterized using actinometry. Case studies of oxidative hydroxylation of phenylboronic acids and dimerization of thiophenol demonstrate the capabilities and advantages of the system. Reaction conditions identified through droplet screening translate directly to continuous synthesis with minor platform modifications.  相似文献   

14.
Anti‐adhesion therapies interfere with the bacterial adhesion to the host and thus avoid direct disruption of bacterial cycles for killing, which may alleviate resistance development. Herein, an anti‐adhesion nanomedicine platform is made by wrapping synthetic polymeric cores with bacterial outer membranes. The resulting bacterium‐mimicking nanoparticles (denoted “OM‐NPs”) compete with source bacteria for binding to the host. The “top‐down” fabrication of OM‐NPs avoids the identification of the adhesins and bypasses the design of agonists targeting these adhesins. In this study, OM‐NPs are made with the membrane of Helicobacter pylori and shown to bind with gastric epithelial cells (AGS cells). Treatment of AGS cells with OM‐NPs reduces H. pylori adhesion and such anti‐adhesion efficacy is dependent on OM‐NP concentration and its dosing sequence.  相似文献   

15.
16.
17.
Recent reports demonstrate that a two‐dimensional (2D) structural characteristic can endow perovskites with both remarkable photoelectric conversion efficiency and high stability, but the synthesis of ultrathin 2D perovskites with large sizes by facile solution methods is still a challenge. Reported herein is the controlled growth of 2D (C4H9NH3)2PbBr4 perovskites by a chlorobenzene‐dimethylformide‐acetonitrile ternary solvent method. The critical factors, including solvent volume ratio, crystallization temperature, and solvent polarity on the growth dynamics were systematically studied. Under optimum reaction condition, 2D (C4H9NH3)2PbBr4 perovskites, with the largest lateral dimension of up to 40 μm and smallest thickness down to a few nanometers, were fabricated. Furthermore, various iodine doped 2D (C4H9NH3)2PbBrx I4−x perovskites were accessed to tune the optical properties rationally.  相似文献   

18.
19.
Halide double perovskites have recently bloomed as the green candidates for optoelectronic applications, such as X‐ray detection. Despite great efforts, the exploration of promising organic–inorganic hybrid double perovskites toward X‐ray detection remains unsuccessful. Now, single crystals of the lead‐free hybrid double perovskite, (BA)2CsAgBiBr7 (BA+ is n‐butylammonium), featuring the unique 2D multilayered quantum‐confined motif, enable quite large μτ (mobility‐lifetime) product up to 1.21×10?3 cm2 V?1. This figure‐of‐merit realized in 2D hybrid double perovskites is unprecedented and comparable with that of CH3NH3PbI3 wafers. (BA)2CsAgBiBr7 crystals also exhibit other intriguing attributes for X‐ray detection, including high bulk resistivity, low density of defects and traps, and large X‐ray attenuation coefficient. Consequently, a vertical‐structure crystal device under X‐ray source yields a superior sensitivity of 4.2 μC Gyair?1 cm?2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号