首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
Reported here is a molecular dipole that self‐assembles into highly ordered patterns at the liquid‐solid interface, and it can be switched at room temperature between a bright and a dark state at the single‐molecule level. Using a scanning tunneling microscope (STM) under suitable bias conditions, binary information can be written at a density of up to 41 Tb cm?2 (256 Tb/in2). The written information is stable during reading at room temperature, but it can also be erased at will, instantly, by proper choice of tunneling conditions. DFT calculations indicate that the contrast and switching mechanism originate from the stacking sequence of the molecular dipole, which is reoriented by the electric field between the tip and substrate.  相似文献   

3.
    
The single-molecular conductance between two π-conjugated wires with and without a radical substituent has been compared. Specifically, methyl- and iminonitroxide-substituted 4-(biphenyl-4-yl)pyridine wires bound onto a porphyrin template were subjected to scanning tunneling microscopy (STM) apparent-height measurement at the interface between highly oriented pyrolytic graphite (HOPG) and octan-1-oic acid. Statistical analysis of the STM images revealed that the radical-substituted wire has 3.2±1.7-fold higher conductance than the methyl-substituted reference. Although density functional theory (DFT) calculation suggests that only 17 % of the SOMO is distributed on the wire moiety, the effect was significant. This study presents the potential of radical substituents to achieve high conductivity in molecular wires.  相似文献   

4.
5.
    
The covalent linking of molecular building blocks on surfaces enables the construction of specific molecular nanostructures of well‐defined shape. Molecular nodes linked to various entities play a key role in such networks, but represent a particular challenge because they require a well‐defined arrangement of different building blocks. Herein, we describe the construction of a chemically and geometrically well defined covalent architecture made of one central node and three molecular wires arranged in a nonsymmetrical way and thus encoding different conjugation pathways. Very different architectures of either very limited or rather extended size were obtained depending on the building blocks used for the covalent linking process on the Au(111) surface. Electrical measurements were carried out by pulling individual molecular nodes with the tip of a scanning tunneling microscope. The results of this challenging procedure indicate subtle differences if the nodes are contacted at inequivalent termini.  相似文献   

6.
    
We report the on-surface synthesis and spectroscopic study of laterally extended chevron graphene nanoribbons (GNRs) and compare them with the established chevron GNRs, emphasizing the consistency of bandgap reduction of semiconducting GNRs with increased width. The laterally extended chevron GNRs grown on Au(111) exhibit a bandgap of about 2.2 eV, which is considerably smaller than the values reported for chevron GNRs in similar studies.  相似文献   

7.
    
Redox enzymes, which catalyze electron transfer reactions in living organisms, can be used as selective and sensitive bioreceptors in biosensors, or as efficient catalysts in biofuel cells. In these bioelectrochemical devices, the enzymes are immobilized at a conductive surface, the electrode, with which they must be able to exchange electrons. Different physicochemical methods have been coupled to electrochemistry to characterize the enzyme-modified electrochemical interface. In this Review, we summarize most efforts performed to investigate the enzymatic electrodes at the micro- and even nanoscale, thanks to microscopy techniques. Contrary to electrochemistry, which gives only a global information about all processes occurring at the electrode surface, microscopy offers a spatial resolution. Several techniques have been implemented; mostly scanning probe microscopies like atomic force microscopy, scanning tunneling microscopy, and scanning electrochemical microscopy, but also scanning electron microscopy and fluorescence microscopy. These studies demonstrate that various information can be obtained thanks to microscopy at different scales. Electrode imaging has been performed to confirm the presence of enzymes, to quantify and localize the biomolecules, but also to evaluate the morphology of immobilized enzymes, their possible conformation changes upon turnover, and their orientation at the electrode surface. Local redox activity has also been imaged and kinetics has been resolved.  相似文献   

8.
9.
  总被引:3,自引:0,他引:3  
The size regime for devices produced by photolithographic techniques is limited. Therefore, other patterning techniques have been intensively studied to create smaller structures. Scanning-probe-based patterning techniques, such as dip-pen lithography, local force-induced patterning, and local-probe oxidation-based techniques are highly promising because of their relative ease and widespread availability. The latter of these is especially interesting because of the possibility of producing nanopatterns for a broad range of chemical and physical modification and functionalization processes; both the production of nanometer-sized electronic devices and the formation of devices involving (bio)molecular recognition and sensor applications is possible. This Review highlights the development of various scanning probe systems and the possibilities of local oxidation methods, as well as giving an overview of state-of-the-art nanometer-sized devices, and a view of future development.  相似文献   

10.
    
Atomic scale defects significantly affect the mechanical, electronic, and optical properties of π-conjugated polymers. Here, isolated atomic-scale defects are deliberately introduced into a prototypical anthracene-ethynylene π-conjugated polymer, and its local density of states is carefully examined on the atomic scale to show how individual defects modify the inherent electronic and magnetic properties of this one-dimensional systems. Scanning tunneling and atomic force microscopy experiments, supplemented with density functional theory calculations, reveal the existence of a sharp electronic resonance at the Fermi energy around certain defects, which is associated with the formation of a local magnetic moment accompanied by substantial mitigation of the mobility of charge carriers. While defects in traditionally synthesized polymers lead to arbitrary conformations, the presented results clearly reflect the preferential formation of low dimensional defects at specific polymer sites, which may introduce the possibility of engineering macroscopic defects in surface-synthesized conjugated polymers.  相似文献   

11.
The cycloaddition reaction of an alkyne and azide to form a 1,2,3‐triazole is widely used in many areas. However, the stability of the triazole moiety under mechanical stress is unclear. To see if a triazole could be selectively split into an alkyne and azide in the presence of other typical covalent bonds, a mica surface functionalized with a molecule containing a triazole moiety in the middle and an activated ester at the end was prepared. An atomic force microscope (AFM) tip with amino groups on its surface was ramped over the mica surface at predefined locations, which could temporarily link the tip to the surface through amide bond formation. During retraction, the triazole or another bond in the linkage broke, and a force was recorded. The forces varied widely at different ramps from close to 0 pN to 860 pN due to nonspecific adhesions and to the inherent inconsistency of single bond rupture. If some of the forces were from triazole cycloreversion, there would be alkynes at the predefined ramping locations. The surface was reacted with an azide carboxylic acid followed by labeling with amino Au nanoparticles (AuNPs). AFM imaging revealed AuNPs at the predicted locations, which provided evidence that under certain conditions triazole could be split selectively in the presence of other bonds at forces below 860 pN.  相似文献   

12.
13.
    
A combined experimental and theoretical study on molecular junctions with asymmetry in both the electrode type and in the anchoring group type is presented. A scanning tunnelling microscope is used to create the “asymmetric” Au-S-(CH2)n-COOH-graphene molecular junctions and determine their conductance. The measurements are combined with electron transport calculations based on density functional theory (DFT) to analyze the electrical conductance and its length attenuation factor from a series of junctions of different molecular length (n). These results show an unexpected trend with a rather high conductance and a smaller attenuation factor for the Au-S-(CH2)n-COOH-graphene configuration compared to the equivalent junction with the “symmetrical” COOH contacting using the HOOC-(CH2)n-COOH series. Owing to the effect of the graphene electrode, the attenuation factor is also smaller than the one obtained for Au/Au electrodes. These results are interpreted through the relative molecule/electrode couplings and molecular level alignments as determined with DFT calculations. In an asymmetric junction, the electrical current flows through the less resistive conductance channel, similarly to what is observed in the macroscopic regime.  相似文献   

14.
15.
Novel κ3N,N,O ligands tend to form 1D coordination polymer strands. Deposition of 1D structures on highly oriented pyrolytic graphite (HOPG) was achieved from diluted solutions and polymer strands have been studied on HOPG by AFM/STM. Single strands were mapped by STM and their electronic properties were subsequently characterized by current imaging tunneling spectroscopy (CITS). Periodic density functional calculations simulating a polymer strand deposited on a HOPG surface are in agreement with the zig‐zag structure indicated by experimental findings. Both the observed periodicity and the Zn–Zn distances can be reproduced in the simulations. Van der Waals interactions were found to play a major role for the geometry of the isolated polymer strand, for the adsorption geometry on HOPG, as well as for the adsorption energy.  相似文献   

16.
    
On‐surface synthesis shows significant potential in constructing novel nanostructures/nanomaterials, which has been intensely studied in recent years. The formation of acetylenic scaffolds provides an important route to the fabrication of emerging carbon nanostructures, including carbyne, graphyne, and graphdiyne, which feature chemically vulnerable sp‐hybridized carbon atoms. Herein, we designed and synthesized a tribromomethyl‐substituted compound. By using a combination of high‐resolution scanning tunneling microscopy, non‐contact atomic force microscopy, and density functional theory calculations, we demonstrated that it is feasible to convert these compounds directly into C?C triple‐bonded structural motifs by on‐surface dehalogenative homocoupling reactions. Concurrently, sp3‐hybridized carbon atoms are converted into sp‐hybridized ones, that is, an alkyl group is transformed into an alkynyl moiety. Moreover, we achieved the formation of dimer structures, one‐dimensional molecular wires, and two‐dimensional molecular networks on Au(111) surfaces, which should inspire further studies towards two‐dimensional graphyne structures.  相似文献   

17.
介绍科学家如何运用扫描隧道显微镜和原子力显微镜“看到”原子、分子和电子云,实现单原子和单分子操纵,并使在分子水平观察化学反应前后物质共价键的构型成为可能。  相似文献   

18.
19.
    
Glaser-like coupling of terminal alkynes by thermal activation is extensively used in on-surface chemistry. Here we demonstrate an intramolecular version of this reaction performed by atom manipulation. We used voltage pulses from the tip to trigger a Glaser-like coupling between terminal alkyne carbons within a custom-synthesized precursor molecule adsorbed on bilayer NaCl on Cu(111). Different conformations of the precursor molecule and the product were characterized by molecular structure elucidation with atomic force microscopy and orbital density mapping with scanning tunneling microscopy, accompanied by density functional theory calculations. We revealed partially dehydrogenated intermediates, providing insight into the reaction pathway.  相似文献   

20.
Poly(3‐hexylthiophene) (P3HT) has been widely used in devices owing to its excellent properties and structural features. However, devices based on pure P3HT have not exhibited high performance. Strategies, such as thermal annealing and surface doping, have been used to improve the electrical properties of P3HT. In this work, different from previous studies, the effect of thermal annealing on P3HT nanofibers are examined, ranging from the single polymer chain conformation to chain packing, and the interfacial interactions with graphene oxide (GO) at nanoscale dimensions, by using scanning tunneling microscopy (STM), atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). High‐resolution STM images directly show the conformational changes of single polymer chains after thermal annealing. The morphology of P3HT nanofibers and the surface potential changes of the P3HT nanofibers and GO is further investigated by AFM and KPFM at the nanoscale, which demonstrate that the surface potentials of P3HT decrease, whereas that of GO increases after thermal annealing. All of the results demonstrate the stronger interfacial interactions between P3HT and GO occur after thermal treatments due to the changes in P3HT chain conformation and packing order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号