首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Graphene quantum dots (GQDs) have been widely studied in recent years due to its unique structure-related properties, such as optical, electrical and optoelectrical properties. GQDs are considered new kind of quantum dots (QDs), as they are chemically and physically stable because of its intrinsic inert carbon property. Furthermore, GQDs are environmentally friendly due to its non-toxic and biologically inert properties, which have attracted worldwide interests from academic and industry. In this review, a number of GQDs preparation methods, such as hydrothermal method, microwave-assisted hydrothermal method, soft-template method, liquid exfoliation method, metal-catalyzed method and electron beam lithography method etc., are summarized. Their structural, morphological, chemical composition, optical, electrical and optoelectrical properties have been characterized and studied. A variety of elemental dopant, such as nitrogen, sulphur, chlorine, fluorine and potassium etc., have been doped into GQDs to diversify the functions of the material. The control of its size and shape has been realized by means of preparation parameters, such as synthesis temperature, growth time, source concentration and catalyst etc. As far as energy level engineering is concerned, the elemental doping has shown an introduction of energy level in GQDs which may tune the optical, electrical and optoelectrical properties of the GQDs. The applications of GQDs in biological imaging, optoelectrical detectors, solar cells, light emitting diodes, fluorescent agent, photocatalysis, and lithium ion battery are described. GQD composites, having optimized contents and properties, are also discussed to extend the applications of GQDs. Basic physical and chemical parameters of GQDs are summarized by tables in this review, which will provide readers useful information.  相似文献   

2.
Citric acid,histidine,pentaethylenehexamine and boric acid were mixed and pyrolyzed to prepare histidine and pentaethylenehexamine-functionalized and boron-doped graphene quantum dots (HPB-GQD). The resulting HPB-GQD was composed of graphene sheets with size of 4.17±0.12 nm, and also with rich functional groups at the edges of graphene sheets. The fluorescence emission of HPB-GQD depended on the excitation wavelength. Ultraviolet excitation at 375 nm produced the strongest blue fluorescence emission. The fluorescence quantum yield was 87.4%, which was significantly better than that of traditional GQD,and single histidine, pentaethylenehexamine or boric acid-functionalized GQD,showing that introduction of histidine, pentaethylenehexamine and boron can significantly improve the luminescence efficiency. Based on the fluorescence quenching by the interaction between curcumin and HPB-GQD, a method for fluorescence determination of curcumin was established. The linear range and detection limit were 0.05-20.0 μmol/L and 0.017 μmol/L,respectively. The proposed method has been successfully applied to the fluorescence detection of curcumin in Chinese herbal medicine. The results were basically consistent with those of liquud chromatographymass spectrometry(LC-MS)and the recoveries were in the range of 96.0%-104.0%. © 2023 The Authors.  相似文献   

3.
Despite the numerous techniques developed for the studying nanoparticle and peptide interaction nowadays, sensitive and convenient assay in the process of flow, especially to simulate the self‐assembly of quantum dots (QDs) and peptide inflow in blood vessels, still remains big challenges. Here, we report a novel assay for studying the self‐assembly of QDs and peptide, based on CE using a bending capillary. We demonstrate that the semicircles numbers of the bending capillary affect the self‐assembly kinetics of CdSe/ZnS QDs and ATTO‐D3LVPRGSGP9G2H6 peptide. Moreover, benefitting from this novel assay, the effect of the position on the self‐assembly has also been realized. More importantly, we also demonstrate that this novel assay can be used for studying the stability of the QDs–peptide complex inflow. We believe that our novel assay proposed in this work could be further used as a general strategy for the studying nanoparticle–biomolecule interaction or biomolecule–biomolecule interaction.  相似文献   

4.
The fluorescent and quantum yield (QY) of graphene quantum dots has been improved in recent years by doped atoms, which have good application prospects in fluorescence sensors and biological imaging. Here, a one-step hydrothermal synthesis method was used to synthesize manganese ions bonded with boron and nitrogen-doped graphene quantum dots (Mn-BN-GQDs). Compared with the boron and nitrogen co-doping graphene quantum dots (BN-GQDs), the fluorescence properties and quantum yield of Mn-BN-GQDs are significantly improved. Meanwhile, Mn-BN-GQDs exhibit low toxicity and good fluorescence imaging in living cells and has high selectivity to Fe3+ ions. Therefore, this experiment design Mn-BN-GQDs as a fluorescence sensor to detect Fe3+ ions, providing strong evidence for the advanced high sensitivity, selectivity and wide detection range of the Mn-BN-GQDs as a fluorescence sensor. These results indicate a dual linear relationship with good linear relationships in the 10–100 μM and 100–800 μM ranges, and limit of detection are 0.78 μM and 9.08 μM, respectively. Cellular imaging results demonstrate that Mn-BN-GQDs can be used as fluorescence sensors in biological imaging. Mn-BN-GQDs can be used for fluorescence sensing in biological imaging in combination with low toxicity, QY and quantum dot lifetime.  相似文献   

5.
This work presents a simple, fast and sensitive method for the preconcentration and quantification of graphene quantum dots (GQDs) in aqueous samples. GQDs are considered an object of analysis (analyte) not an analytical tool which is the most frequent situation in Analytical Nanoscience and Nanotechnology. This approach is based on the preconcentration of graphene quantum dots on an anion exchange sorbent by solid phase extraction and their subsequent elution prior fluorimetric analysis of the solution containing graphene quantum dots. Parameters of the extraction procedure such as sample volume, type of solvent, sample pH, sample flow rate and elution conditions were investigated in order to achieve extraction efficiency. The limits of detection and quantification were 7.5 μg L−1 and 25 μg L−1, respectively. The precision for 200 μg L−1, expressed as %RSD, was 2.8%. Recoveries percentages between 86.9 and 103.9% were obtained for two different concentration levels. Interferences from other nanoparticles were studied and no significant changes were observed at the concentration levels tested. Consequently, the optimized procedure has great potential to be applied to the determination of graphene quantum dots at trace levels in drinking and environmental waters.  相似文献   

6.
Rapid detection and identification of Escherichia coli(E.coli) is essential to prevent its quickly spread.In this study,a novel fluorescence probe based on ZnTe quantum dots(QDs) modified by mannose(MAN)had been prepared for the determination of E.coli.The results showed that the obtained QDs showed excellent selectivity toward E.coli,and presented a good linearity in range of 1.0×105~1.0×108 CFU/mL.The optimum fluorescence intensity for detecting E. coli was found to be at...  相似文献   

7.
Well-dispersed carbon-coated CdS (CdS@C) quantum dots were successfully prepared via the improved pyrolysis of bis(1-dodecanethiol)-cadmium(II) under nitrogen atmosphere. This simple method effectively solved the sintered problem resulted from conventional pyrolysis process. The experimental results indicated that most of the as-prepared nanoparticles displayed well-defined core-shell structures. The CdS cores with diameter of ∼5 nm exhibited hexagonal crystal phase, the carbon shells with thickness of ∼2 nm acted as a good dispersion medium to prevent CdS particles from aggregation, and together with CdS effectively formed a monodisperse CdS@Carbon nanocomposite. This composite presented a remarkable fluorescence enhancement effect, which indicated that the prepared nanoparticles might be a promising photoresponsive material or biosensor. This improved pyrolysis method might also offer a facile way to prepare other carbon-coated semiconductor nanostructures.  相似文献   

8.
J Wang  X Huang  F Zan  CG Guo  C Cao  J Ren 《Electrophoresis》2012,33(13):1987-1995
In this paper, we systematically investigated the conjugation of quantum dots (QDs) with certain biomolecules using capillary electrophoresis (CE) and fluorescence correlation spectroscopy (FCS) methods. Commercial QDs and aqueous-synthesized QDs in our lab were used as labeling probes, certain bio-macromolecules, such as proteins, antibodies, and enzymes, were used as mode samples, and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysulfo-succinimide (Sulfo-NHS) were used as linking reagents. We studied the effects of certain factors such as the isoelectric points (pIs) of bio-macromolecules and buffer pH on the bioconjugation of QDs, and found that the pIs of bio-macromolecules played an important role in the conjugation reaction. By the optimization of the buffer pH some proteins with different pIs were efficiently conjugated with QDs using EDC and Sulfo-NHS as linking agents. Furthermore, we on-line investigated the kinetic process of QDs-bioconjugation by FCS and found that the conjugation reaction of QDs with protein was rapid and the reaction process almost completed within 10 min. We also observed that QDs conjugated with proteins were stable for at least 5 days in phosphate buffer. Our work described here will be very helpful for the improvement of the QDs conjugation efficiency in bioapplications.  相似文献   

9.
功能性CdTe量子点荧光增敏法测定盐酸多巴胺   总被引:1,自引:0,他引:1  
以CdTe量子点作为荧光探针,基于荧光增敏法对盐酸多巴胺进行了定量检测,考察了缓冲溶液体系、量子点浓度、反应时间等多种因素的影响。实验结果表明,在pH7.5的0.2 mol/L Na2HPO4-NaH2PO4缓冲液中,反应时间为20 min,盐酸多巴胺浓度为1.2×10-8~1.0×10-7mol/L时,其线性回归方程为△F=-27.47+25.54c(10-8mol/L),相关系数和检测限分别为0.9992和6×10-11mol/L。该方法为盐酸多巴胺的测定提供了新的方法。  相似文献   

10.
Characterization of quantum dots using capillary zone electrophoresis   总被引:1,自引:0,他引:1  
Pereira M  Lai EP  Hollebone B 《Electrophoresis》2007,28(16):2874-2881
Commercially available quantum dots (QDs) were characterized using CE. The CE instruments were laboratory-built, each being capable of both electrokinetic and hydrodynamic injection. Modes of detection include UV absorption and LIF. The CE-LIF system was further modified to handle microliter sample volumes during injection. Sodium phosphate (5-25 mM, pH 7.5-11) was found to be a good buffer electrolyte. Sodium mercaptoproprionate CdTe/CdS (ADS620) QDs and carboxylic acid CdSe/ZnS (T2-Evitag) QDs yielded high separation efficiencies of N = 1.5x10(6) plates at t(M) = 10 min and N = 1.0x10(5) plates at t(M) = 3.8 min, respectively. Apparently the EDC/sulfo-NHS bioconjugation chemistry worked well with the neutral T2-Evitag QDs, but not so well with the negatively charged ADS620 QDs. This preliminary knowledge will serve as a basis for new CE immunoassay studies of QD-biomolecule conjugates and their immunocomplexes with target analytes.  相似文献   

11.
CdS quantum dots (QDs) modified with l-cysteine has been prepared by one step. They are water-soluble and biocompatible. To improve CdS QDs stability and interaction between silver ion and functionalized CdS QDs in aqueous solution, some amounts of fresh l-cysteine were added to functionalized CdS solution. Based on the characteristic fluorescence enhancement of CdS QDs at 545 nm by silver ions in the presence of some amounts of fresh l-cysteine, simultaneously, a gradual red shift of fluorescence emission bands of CdS QDs from 545 to 558 nm was observed. A simple, rapid, sensitive and specific detection method for silver ion was proposed. Under optimum conditions, the fluorescence intensity of CdS QDs is linearly proportional to silver concentration from 2.0 × 10−8 to 1.0 × 10−6 mol/L with a detection limit of 5.0 × 10−9 mol/L. In comparison with single organic fluorophores, functionalized CdS quantum dots are brighter, more stable against photobleaching, and don’t suffer from blinking. Furthermore, owing to the fluorescence enhancement effect of CdS QDs by silver ion, the proposed method showed lower detection blank and higher sensitivity. Possible fluorescence enhancement mechanism was also studied.  相似文献   

12.
Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots   总被引:1,自引:0,他引:1  
Wang GL  Dong YM  Yang HX  Li ZJ 《Talanta》2011,83(3):943-947
The importance of cysteine (Cys) in biological systems has stimulated a great deal of efforts in the development of analytical methods for the determination of this amino acid. In this work, a novel fluorescent probe for Cys based on citrate (Cit)-capped CdS quantum dots (QDs) is reported. The Cit-capped CdS QDs fluorescent probe offers good sensitivity and selectivity for detecting Cys. A good linear relationship was obtained from 1.0 × 10−8 mol L−1 to 5.0 × 10−5 mol L−1 for Cys. The detection limit was calculated as 5.4 × 10−9 mol L−1. The proposed method was applied to detect Cys in human urine samples, which showed satisfactory results. This assay is based on both the lability of Cit and the strong affinity of thiols to the surface of CdS QDs. The addition of Cys improved the passivation of the surface traps of CdS QDs and enhanced the fluorescence intensity.  相似文献   

13.
Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/(I − I0) with concentration of edaravone was linear in the range of (1.45–17.42) μg/mL (0.008–0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3σ/κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.  相似文献   

14.
随着纳米技术的进步,纳米颗粒正在被逐步应用到法庭科学领域的手印检验之中。近年来,半导体量子点因其良好的荧光特性而备受国内外法庭科学家的推崇,但大多数半导体量子点具有毒性,且会对环境造成污染,这些问题制约了半导体量子点在法庭科学领域中的应用。与传统有机染料和金属内核的半导体量子点相比,碳量子点具有毒性低、污染小、生物相容性优异的特点,现已应用于医学、生物、化学等多个领域。本文综述了半导体量子点在手印显现中的应用,介绍了碳量子点的研究进展,并指出碳量子点显现手印是今后法庭科学领域的重要研究方向。  相似文献   

15.
In this work, the capillary electrophoresis mobility shift assay (CEMSA) was first adopted to study the interaction of protein with quantum dots (QDs). In this study, bovine serum albumin (BSA) and CdTe QDs were used as model samples. We observed that BSA was facilely adsorbed to CdTe QDs surface, and the QD-BSA complex was formed by a 1:1 stoichiometric ratio. A value of 2.17 4-0.27 × 10^6 mol^-1 L^-1 (at 25 ℃) for the association constant was obtained by CEMSA.  相似文献   

16.
Capillary electrophoresis with fluorescence detection was utilized to probe the self‐assembly between cyanine group dye labeled tetrahistidine containing peptide and CdSe/ZnS quantum dots, inside the capillary. Quantum dots and cyanine group dye labeled tetrahistidine containing peptide were injected into the capillary one after the other and allowed to self‐assemble. Their self‐assembly resulted into a measurable Förster resonance energy transfer signal between quantum dots and cyanine group dye labeled tetrahistidine containing peptide. The Förster resonance energy transfer signal increased upon increasing the cyanine group dye labeled tetrahistidine containing peptide/quantum dot molar ratio and reached a plateau at the 32/1 molar ratio. Additionally, the Förster resonance energy transfer signal was also affected by the increment of the interval time of injection and the sampling time. Online ligand exchange experiments were used to assess, the potential of a monovalent ligand of imidazole and a hexavalent ligand peptide, to displace surface bound cyanine group dye labeled peptide ligands from the quantum dots surface. Under optimal conditions, a linear relationship between the integrated peak areas and hexavalent ligand peptide was obtained at a hexavalent ligand concentration range of 0−0.5 mM. Therefore, the present assay has the potential to be applied in the online ligands detection.  相似文献   

17.
S-doped graphene quantum dots (S-GQDs) with well crystallization and monodispersity were prepared and applied as novel nanophotocatalyst for visible light degradation of basic fuchsin.  相似文献   

18.
As a vast number of novel materials in particular inorganic nanoparticles have been invented and introduced to all aspects of life, public concerns about how they might affect our ecosystem and human life continue to arise. Such incertitude roots at a fundamental question of how inorganic nanoparticles self‐assemble with biomolecules in solution. Various techniques have been developed to probe the interaction between particles and biomolecules, but very few if any can provide advantages of both rapid and convenient. Herein, we report a systematic investigation on quantum dots (QDs) and protein self‐assembly inside a capillary. QDs and protein were injected to a capillary one after another. They were mixed inside the capillary when a high voltage was applied. Online separation and detection were then achieved. This new method can also be used to study the self‐assembly kinetics of QDs and protein using the Hill equation, the KD value for the self‐assembly of QDs and protein was calculated to be 8.8 μM. The obtained results were compared with the previous out of‐capillary method and confirmed the effectiveness of the present method.  相似文献   

19.
Carbon quantum dots (CQDs) are a new class of fluorescence small carbon nanoparticles with a particle size of less than 10 nm and have vast applications in the field of bioimaging, biosensing and disease-detection. These are promising materials for nano-biotechnology since it has smaller particle size, excellent biocompatibility and excitation wavelength dependent photoluminescence (PL) behavior, photo induced electron transfer, chemical inertness and low toxicity. These materials have excellent fluorescent properties such as broad excitation spectra, narrow and tunable emission spectra, and high photostability against photo bleaching and blinking than other fluorescent semiconductor quantum dots. This review article demonstrate the recent progress in the synthesis, functionalization and technical applications of carbon quantum dots using electrochemical oxidation, combustion/thermal, chemical change, microwave heating, arc-discharge, and laser ablation methods from various natural resources. Natural carbon sources are used for the preparation of CQDs due to its low cost, environmental friendly and widely available.  相似文献   

20.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520 nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33 μM with a limit of detection (LOD) of 0.07 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号