首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low‐electron‐count cationic platinum complex [Pt(ItBu’)(ItBu)][BArF], 1 , interacts with primary and secondary silanes to form the corresponding σ‐SiH complexes. According to DFT calculations, the most stable coordination mode is the uncommon η1‐SiH. The reaction of 1 with Et2SiH2 leads to the X‐ray structurally characterized 14‐electron PtII species [Pt(SiEt2H)(ItBu)2][BArF], 2 , which is stabilized by an agostic interaction. Complexes 1 , 2 , and the hydride [Pt(H)(ItBu)2][BArF], 3 , catalyze the hydrosilation of CO2, leading to the exclusive formation of the corresponding silyl formates at room temperature.  相似文献   

2.
The red‐colored tetraborane(4) [B4(hpp)4]3+. ( 3 ; hpp=1,3,4,6,7,8‐hexahydro‐2H‐pyrimido[1,2‐a]pyrimidinate) with a rhomboid B4 skeleton stabilized by four N donors, was synthesized by the reaction of the strong hydride abstraction reagent [(acridine)BCl2][AlCl4] with the electron‐rich diborane(4) [HB(hpp)]2 ( 1 ). The salt 3 [AlCl4]3 was structurally characterized and the presence of unpaired electrons proven by EPR measurements. The unprecedented radical tricationic 3 is distinguished by a high positive charge and boron atoms in a low oxidation state (less than two).  相似文献   

3.
Gas‐phase clusters are deemed to be σ‐aromatic when they satisfy the 4n+2 rule of aromaticity for delocalized σ electrons and fulfill other requirements known for aromatic systems. While the range of n values was shown to be quite broad when applied to short‐lived clusters found in molecular‐beam experiments, stability of all‐metal cluster‐like fragments isolated in condensed phase was previously shown to be mainly ascribed to two electrons (n=0). In this work, the applicability of this concept is extended towards solid‐state compounds by demonstrating a unique example of a storable compound, which was isolated as a stable [K([2.2.2]crypt)]+ salt, featuring a [Au2Sb16]4? cluster core possessing two all‐metal aromatic AuSb4 fragments with six delocalized σ electrons each (n=1). This discovery pushes the boundaries of the original idea of Kekulé and firmly establishes the usefulness of the σ‐aromaticity concept as a general idea for both small clusters and solid‐state compounds.  相似文献   

4.
We report the spectroscopic identification of the [B3(NN)3]+ and [B3(CO)3]+ complexes, which feature the smallest π‐aromatic system B3+. A quantum chemical bonding analysis shows that the adducts are mainly stabilized by L→[B3L2]+ σ‐donation.  相似文献   

5.
The fact that molecular crystals exist as different polymorphic modifications and the identification of as many polymorphs as possible are important considerations for the pharmaceutic industry. The molecule of N‐benzyl‐4‐hydroxy‐1‐methyl‐2,2‐dioxo‐1H‐2λ6,1‐benzothiazine‐3‐carboxamide, C17H16N2O4S, does not contain a stereogenic atom, but intramolecular hydrogen‐bonding interactions engender enantiomeric chiral conformations as a labile racemic mixture. The title compound crystallized in a solvent‐dependent single chiral conformation within one of two conformationally polymorphic P212121 orthorhombic chiral crystals (denoted forms A and B). Each of these pseudo‐enantiomorphic crystals contains one of two pseudo‐enantiomeric diastereomers. Form A was obtained from methylene chloride and form B can be crystallized from N,N‐dimethylformamide, ethanol, ethyl acetate or xylene. Pharmacological studies with solid–particulate suspensions have shown that crystalline form A exhibits an almost fourfold higher antinociceptive activity compared to form B.  相似文献   

6.
The σ‐hole of M2H6 (M = Al, Ga, In) and π‐hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2H6···NH3 and MH3···N2P2F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ‐hole interactions and π‐hole interactions. The two types of interactions are all partial‐covalent interactions; the π‐hole interactions are stronger than σ‐hole interactions. The electrostatic energy is the largest contribution for forming the σ‐hole and π‐hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ‐hole interactions are somewhat greater than those of the π‐hole interactions. However, the polarization contributions for the π‐hole interactions are somewhat greater than those for the σ‐hole interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Equilibrium geometries, bond dissociation energies and relative energies of axial and equatorial iron tetracarbonyl complexes of the general type Fe(CO)4L (L = CO, CS, N2, NO+, CN, NC, η2‐C2H4, η2‐C2H2, CCH2, CH2, CF2, NH3, NF3, PH3, PF3, η2‐H2) are calculated in order to investigate whether or not the ligand site preference of these ligands correlates with the ratio of their σ‐donor/π‐acceptor capabilities. Using density functional theory and effective‐core potentials with a valence basis set of DZP quality for iron and a 6‐31G(d) all‐electron basis set for the other elements gives theoretically predicted structural parameters that are in very good agreement with previous results and available experimental data. Improved estimates for the (CO)4Fe–L bond dissociation energies (D0) are obtained using the CCSD(T)/II//B3LYP/II combination of theoretical methods. The strongest Fe–L bonds are found for complexes involving NO+, CN, CH2 and CCH2 with bond dissociation energies of 105.1, 96.5, 87.4 and 83.8 kcal mol–1, respectively. These values decrease to 78.6, 64.3 and 64.2 kcal mol–1, respectively, for NC, CF2 and CS. The Fe(CO)4L complexes with L = CO, η2‐C2H4, η2‐C2H2, NH3, PH3 and PF3 have even smaller bond dissociation energies ranging from 45.2 to 37.3 kcal mol–1. Finally, the smallest bond dissociation energies of 23.5, 22.9 and 18.5 kcal mol–1, respectively are found for the ligands NF3, N2 and η2‐H2. A detailed examination of the (CO)4Fe–L bond in terms of a semi‐quantitative Dewar‐Chatt‐Duncanson (DCD) model is presented on the basis of the CDA and NBO approach. The comparison of the relative energies between axial and equatorial isomers of the various Fe(CO)4L complexes with the σ‐donor/π‐acceptor ratio of their respective ligands L thus does not generally support the classical picture of π‐accepting ligands preferring equatorial coordination sites and σ‐donors tending to coordinate in axial positions. In particular, this is shown by iron tetracarbonyl complexes with L = η2‐C2H2, η2‐C2H4, η2‐H2. Although these ligands are predicted by the CDA to be stronger σ‐donors than π‐acceptors, the equatorial isomers of these complexes are more stable than their axial pendants.  相似文献   

8.
Tuning the nature of the linker in a L~BHR phosphinoborane compound led to the isolation of a ruthenium complex stabilized by two adjacent, δ‐C? H and ε‐Bsp2? H, agostic interactions. Such a unique coordination mode stabilizes a 14‐electron “RuH2P2” fragment through connected σ‐bonds of different polarity, and affords selective B? H, C? H, and B? C bond activation as illustrated by reactivity studies with H2 and boranes.  相似文献   

9.
The title compound, [Co(C10H8N2)3]2[V4O12]·11H2O, is composed of two symmetry‐related cations containing octahedrally coordinated CoII ions, a centrosymmetric [V4O12]4− anion with an eight‐membered ring structure made up of four VO4 tetrahedra, and 11 solvent water molecules. The CoII cations and vanadate anions are isolated and build cation and anion layers, respectively. In addition, the title compound exhibits a three‐dimensional network through intra‐ and intermolecular hydrogen‐bond interactions between water molecules and O atoms of the anions, and the crystal structure is stabilized mainly by hydrogen bonds.  相似文献   

10.
The modes of interaction of donor‐stabilized Group 13 hydrides (E=Al, Ga) were investigated towards 14‐ and 16‐electron transition‐metal fragments. More electron‐rich N‐heterocyclic carbene‐stabilized alanes/gallanes of the type NHC?EH3 (E=Al or Ga) exclusively generate κ2 complexes of the type [M(CO)42‐H3E?NHC)] with [M(CO)4(COD)] (M=Cr, Mo), including the first κ2 σ‐gallane complexes. β‐Diketiminato (′nacnac′)‐stabilized systems, {HC(MeCNDipp)2}EH2, show more diverse reactivity towards Group 6 carbonyl reagents. For {HC(MeCNDipp)2}AlH2, both κ1 and κ2 complexes were isolated, while [Cr(CO)42‐H2Ga{(NDippCMe)2CH})] is the only simple κ2 adduct of the nacnac‐stabilized gallane which can be trapped, albeit as a co‐crystallite with the (dehydrogenated) gallylene system [Cr(CO)5(Ga{(NDippCMe)2CH})]. Reaction of [Co2(CO)8] with {HC(MeCDippN)2}AlH2 generates [(OC)3Co(μ‐H)2Al{(NdippCme)2CH}][Co(CO)4] ( 12 ), which while retaining direct Al?H interactions, features a hitherto unprecedented degree of bond activation in a σ‐alane complex.  相似文献   

11.
A boryl‐substituted diphosphene was synthesized through the nucleophilic borylation of PCl3 with a borylzinc reagent, followed by a reduction with Mg. A combined analysis of the resulting diboryldiphosphene by single‐crystal X‐ray diffraction, DFT calculations, and UV/Vis spectroscopy revealed a σ‐electron‐donating effect for the boryl substituent that was slightly weaker than that of the 2,4,6‐tri‐tert‐butylphenyl (Mes*) ligand. The reaction of this diboryldiphosphene with nBuLi afforded a boryl‐substituted phosphinophosphide that was, in comparison with the thermally unstable Mes*‐substituted diaryldiphosphene, stabilized by a π‐electron‐accepting effect of the boryl substituent.  相似文献   

12.
In a high‐resolution photoelectron imaging and theoretical study of the IrB3? cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3 ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3 ring with a bridge‐bonded Ir atom (Cs , 2A′), and the second isomer features a tetrahedral structure (C3v , 2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutral C3v isomer involves significant covalent Ir?B bonding and weak ionic bonding with charge transfer from B3 to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ ring coordinated to a transition metal.  相似文献   

13.
The quest for new oxides with cations containing active lone‐pair electrons (E) covers a broad field of targeted specificities owing to asymmetric electronic distribution and their particular band structure. Herein, we show that the novel compound BaCoAs2O5, with lone‐pair As3+ ions, is built from rare square‐planar Co2+O4 involved in direct bonding between As3+E and Co2+ dz2 orbitals (Co? As=2.51 Å). By means of DFT and Hückel calculations, we show that this σ‐type overlapping is stabilized by a two‐orbital three‐electron interaction allowed by the high‐spin character of the Co2+ ions. The negligible experimental spin‐orbit coupling is expected from the resulting molecular orbital scheme in O3AsE–CoO4 clusters.  相似文献   

14.
The title compound, [Sr7(C7H3NO4)6(SO4)(H2O)6]n, has been synthesized by an ionothermal method using the ionic liquid 1‐ethyl‐3‐methylimidazolium ([Emim]Br) as solvent, and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR and single‐crystal X‐ray diffraction. The structure of the compound can be viewed as a three‐dimensional coordination polymer composed of Sr2+ cations, pyridine‐2,6‐dicarboxylate anions, sulfate anions and water molecules. The compound not only exhibits a three‐dimensional structure with a unique coordination mode of the sulfate anion, but also features the first example of a heptanuclear strontium(II) coordination polymer. The structure is further stabilized by O—H...O hydrogen bonds and π–π stacking interactions.  相似文献   

15.
A boryl‐substituted diphosphene was synthesized through the nucleophilic borylation of PCl3 with a borylzinc reagent, followed by a reduction with Mg. A combined analysis of the resulting diboryldiphosphene by single‐crystal X‐ray diffraction, DFT calculations, and UV/Vis spectroscopy revealed a σ‐electron‐donating effect for the boryl substituent that was slightly weaker than that of the 2,4,6‐tri‐tert‐butylphenyl (Mes*) ligand. The reaction of this diboryldiphosphene with nBuLi afforded a boryl‐substituted phosphinophosphide that was, in comparison with the thermally unstable Mes*‐substituted diaryldiphosphene, stabilized by a π‐electron‐accepting effect of the boryl substituent.  相似文献   

16.
In the crystal structure of the title compound, [LiPd2Cl4(C12H12N2)2](C24F20B)·1.196CD2Cl2 or [{(Me2bipy)PdCl2}2(μ‐Li)]+·B(C6F5)4·1.196CD2Cl2 (Me2bipy is 4,4′‐di­methyl‐2,2′‐bi­pyridine), an Li+ cation is stabilized by complexation with two (Me2bipy)PdCl2 units through weak Li—Cl interactions. This compound is thus a rare example of a complex that exhibits an arrested Cl abstraction.  相似文献   

17.
The reaction of tetraiododiborane (B2I4) with trans‐[Pt(BI2)I(PCy3)2] gives rise to the diplatinum(II) complex [{(Cy3P)(I2B)Pt}2233‐B2I4)], which is supported by a bridging diboranyl dianion ligand [B2I4]2?. This complex is the first transition‐metal complex of a diboranyl dianion, as well as the first example of intact coordination of a B2X4 (X=halide) unit of any type to a metal center.  相似文献   

18.
The structure and bonding of a Pr‐doped boron cluster (PrB7) are investigated using photoelectron spectroscopy and quantum chemistry. The adiabatic electron detachment energy of PrB7 is found to be low [1.47(8) eV]. A large energy gap is observed between the first and second detachment features, indicating a highly stable neutral PrB7. Global minimum searches and comparison between experiment and theory show that PrB7 has a half‐sandwich structure with C6v symmetry. Chemical bonding analyses show that PrB7 can be viewed as a PrII7‐B73−] complex with three unpaired electrons, corresponding to a Pr (4f26s1) open‐shell configuration. Upon detachment of the 6s electron, the neutral PrB7 cluster is a highly stable PrIII7‐B73−] complex with Pr in its favorite +3 oxidation state. The B73− ligand is found to be highly stable and doubly aromatic with six delocalized π and six delocalized σ electrons and should exist for a series of lanthanide MIII7‐B73−] complexes.  相似文献   

19.
The title compound, C16H9NO4, also known as the 3‐benzoyl­pyridinium betaine of squaric acid, exhibits a dipolar electronic ground‐state structure with a positively charged pyridinium fragment and a negatively charged squarate moiety. In the mol­ecule, the two aromatic rings are twisted by 56.03 (2)° relative to one another. The three‐dimensional packing of the mol­ecules is stabilized by C—H·O short contacts.  相似文献   

20.
The tetraaryl μ‐hydridodiborane(4) anion [ 2 H]? possesses nucleophilic B?B and B?H bonds. Treatment of K[ 2 H] with the electrophilic 9‐H‐9‐borafluorene (HBFlu) furnishes the B3 cluster K[ 3 ], with a triangular boron core linked through two BHB two‐electron, three‐center bonds and one electron‐precise B?B bond, reminiscent of the prominent [B3H8]? anion. Upon heating or prolonged stirring at room temperature, K[ 3 ] rearranges to a slightly more stable isomer K[ 3 a ]. The reaction of M[ 2 H] (M+=Li+, K+) with MeI or Me3SiCl leads to equimolar amounts of 9‐R‐9‐borafluorene and HBFlu (R=Me or Me3Si). Thus, [ 2 H]? behaves as a masked [:BFlu]? nucleophile. The HBFlu by‐product was used in situ to establish a tandem substitution‐hydroboration reaction: a 1:1 mixture of M[ 2 H] and allyl bromide gave the 1,3‐propylene‐linked ditopic 9‐borafluorene 5 as sole product. M[ 2 H] also participates in unprecedented [4+1] cycloadditions with dienes to furnish dialkyl diaryl spiroborates, M[R2BFlu].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号