首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quinoidal π‐conjugated polycyclic hydrocarbons have attracted intensive research interest due to their unique optical/electronic properties and possible magnetic activity, which arises from a thermally excited triplet state. However, there is still lack of fundamental understanding on the factors that determine the electronic ground states. Herein, by using quinoidal oligo(9,10‐anthryl)s, it is demonstrated that both aromatic stabilisation and steric strain release play balanced roles in determining the ground states. Oligomers with up to four anthryl units were synthesised and their ground states were investigated by electronic absorption and electron spin resonance (ESR) spectroscopy, assisted by density functional theory (DFT) calculations. The quinoidal 9,10‐anthryl dimer 1 has a closed‐shell ground state, whereas the tri‐ ( 2 ) and tetramers ( 3 ) both have an open‐shell diradical ground state with a small singlet–triplet gap. Such a difference results from competition between two driving forces: the large steric repulsion between the anthryl/phenyl units in the closed‐shell quinoidal form that drives the molecule to a flexible open‐shell diradical structure, and aromatic stabilisation due to the gain of more aromatic sextet rings in the closed‐shell form, which drives the molecule towards a contorted quinoidal structure. The ground states of these oligomers thus depend on the overall balance between these two driving forces and show chain‐length dependence.  相似文献   

2.
The methyl radical recombination (MRR) method has been used for the measurement of cavitation bubble temperatures in aqueous solutions containing a select group of aromatic hydrocarbons as the source for the methyl radicals. The aromatic solutes used were phenol, aniline, m-cresol, and o-toluidine. The maximum bubble core temperatures determined using aniline and phenol were observed to be comparatively high with respect to other reported literature methods and also where the methyl radicals were produced from the cavitation thermolysis of simple aliphatic alcohols. It is concluded that the MRR method cannot be used with organic compounds that do not predominantly produce methyl radicals on the thermal decomposition of the hydrocarbon solutes within the hot core of a collapsing bubble.  相似文献   

3.
A series of new π‐conjugated gelators that contain various aromatic rings (phenyl, naphthyl, 9‐anthryl) and amphiphilic L ‐glutamide was designed, and their gel formation in organic solvents and self‐assembled nanostructures was investigated. The gelators showed good gelation ability in various organic solvents that ranged from polar to nonpolar. Those gelator molecules with small rings such as phenyl and naphthyl self‐assembled into nanotube structures in most organic solvents and showed strong blue emission. However, the 9‐anthryl derivative formed only a nanofiber structure in any organic solvent, probably owing to the larger steric hindrance. All of these gels showed enhanced fluorescence in organogels. Furthermore, during the gel formation, the chirality at the L ‐glutamide moiety was transferred to the nanostructures, thus leading to the formation of chiral nanotubes. One of the nanotubes showed chiral recognition toward the chiral amines.  相似文献   

4.
The effect of solvent on the dehydrogenation of poly(1,3‐cyclohexadiene) (PCHD) with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) [or 2,3,5,6‐tetrachloro‐1,4‐(p‐)‐benzoquinone (TCQ)] was examined to improve the reactivity of benzoquinones for this dehydrogenation reaction. The dehydrogenation of PCHD with DDQ (or TCQ) was strongly affected by the type of solvent, and aromatic hydrocarbon based solvents were appropriate for this dehydrogenation reaction. A charge‐transfer complex between DDQ (or TCQ) and aromatic hydrocarbons was formed in the reaction mixture, and the reactivity of the complex was much higher than that of free DDQ (or TCQ). The formation of a DDQ–aromatic hydrocarbon complex, which has a large diamagnetic shift of the 13C NMR signals with respect to DDQ, was the primary factor for improvement of the reactivity of DDQ. For the TCQ–aromatic hydrocarbon complex, the existence of an electron‐withdrawing group on the aromatic hydrocarbon was the major factor for improvement of the reactivity of TCQ. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 342–350, 2010  相似文献   

5.
The interaction between doxepin, a member of the tricyclic antidepressant (TCA) class of drugs, with beta-cyclodextrin (beta-CD) was investigated using NMR. Several TCAs have been reported to form a complex with beta-CD having 1:1 stoichiometry. Previous results from UV-visible spectroscopy, fluorescence measurements, and molecular modeling indicated that for imipramine, desipramine, and amitriptyline, the TCA aliphatic tail is included in the cyclodextrin cavity with apparently no interaction of the tricyclic ring. An alternative view of the doxepin-beta-CD complex is presented in this work using analysis of complexation-induced chemical shifts (CICSs), the method of continuous variation (Job's analysis), and analysis of ROESY spectra. The Job's plot derived from the NMR spectral data confirms that the complex formed has 1:1 stoichiometry. The largest changes in the CICS data were observed for the aromatic protons of one of the doxepin rings, with much smaller chemical shift changes observed for the protons of the other aromatic ring and the doxepin tail. Perhaps the most significant evidence for inclusion of the doxepin tricyclic ring is the strong ROESY cross peaks between the doxepin aromatic resonances and the protons located inside the beta-CD cavity. Changes in the doxepin (1)H NMR spectrum and the behavior of ROESY exchange cross peaks suggest that inclusion complex formation decreases the rate of internal motions of doxepin.  相似文献   

6.
Radical formation is the initial step for conventional radical chemistry. Reported herein is a unified strategy to generate radicals in situ from aromatic β‐ketoesters by using a photocatalyst. Under visible‐light irradiation, a small amount of photocatalyst fac‐Ir(ppy)3 generates a transient α‐carbonyl radical and persistent ketyl radical in situ. In contrast to the well‐established approaches, neither stoichiometric external oxidant nor reductant is required for this reaction. The synthetic utility is demonstrated by pinacol coupling of ketyl radicals and benzannulation of α‐carbonyl radicals with alkynes to give a series of highly substituted 1‐naphthols in good to excellent yields. The readily available photocatalyst, mild reaction conditions, broad substrate scope, and high functional‐group tolerance make this reaction a useful synthetic tool.  相似文献   

7.
We describe the synthesis and characterization of 1‐(1‐anthryl)‐1‐phenylethylene (1‐An‐E) and 1‐(2‐anthryl)‐1‐phenylethylene (2‐An‐E). These species were used to end cap the living end group of polyisoprene (PI) obtained by anionic polymerization in tetrahydrofuran. The anions generated were used to initiate methyl methacrylate polymerization. In this way, we synthesized two symmetrical PI‐poly(methyl methacrylate) (PMMA) block copolymers each with a single dye at the junction. PI‐An1‐PMMA has an anthracene linked via its 1‐position. PI‐An2‐PMMA has the anthracene linked via its 2‐position. We compare the UV and fluorescence properties of the polymers to model compounds with similar chromophores. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1225–1236, 2003  相似文献   

8.
This study presents the synthesis and characterization of a fused, tricyclic 1,2,3,4‐tetrazine ring system. The molecule is synthesized in a three‐step process from 5,5′‐dinitro‐bis,1,2,4‐triazole via a di‐N‐amino compound. Oxidation to form the azo‐coupled fused tricyclic 1,2,3,4‐tetrazine is achieved using tert‐butyl hypochlorite as the oxidant. The di‐N‐amino compound and the desired fused tricyclic 1,2,3,4‐triazine display interesting thermal behavior and are predicted to be high‐performance energetic materials.  相似文献   

9.
The combustion of fossil fuels forms polycyclic aromatic hydrocarbons (PAHs) composed of five‐ and six‐ membered aromatic rings, such as indene (C9H8), which are carcinogenic, mutagenic, and deleterious to the environment. Indene, the simplest PAH with single five‐ and six‐membered rings, has been predicted theoretically to be formed through the reaction of benzyl radicals with acetylene. Benzyl radicals are found in significant concentrations in combustion flames, owing to their highly stable aromatic and resonantly stabilized free‐radical character. We provide compelling experimental evidence that indene is synthesized through the reaction of the benzyl radical (C7H7) with acetylene (C2H2) under combustion‐like conditions at 600 K. The mechanism involves an initial addition step followed by cyclization and aromatization through atomic hydrogen loss. This reaction was found to form the indene isomer exclusively, which, in conjunction with the high concentrations of benzyl and acetylene in combustion environments, indicates that this pathway is the predominant route to synthesize the prototypical five‐ and six‐membered PAH.  相似文献   

10.
Claus process, comprising of a furnace and a catalytic unit, is used to produce sulfur from H2S. The aromatic contaminants (benzene, toluene, and xylenes) in H2S feed form soot, and clog and deactivate the catalysts. Xylenes are known to be the most damaging ones. Therefore, there is a need to oxidize them in the furnace to enhance catalyst life. This article presents a kinetics study on the oxidation of o‐ and p‐xylene radicals by SO2 (an oxidant that is already present in the furnace) using density functional theory and a composite method. The mechanism begins with H‐abstraction from xylenes to form xylyl radicals, followed by exothermic addition of SO2 to them. The breakage of O S bond in the xylyl‐SO2 adducts leads to the loss of SO molecule, while the remaining O atom on them helps in their oxidation. The isomerization study shows that less‐stable dimethylphenyl radicals have a high tendency to isomerize to resonantly stabilized methylbenzyl radicals. However, methylbenzyl radicals have lower reactivity toward SO2 than dimethylphenyl radicals. The reaction rate constants were found using transition state theory. The reactor simulations reveal that p‐xylene has lower reactivity toward SO2 than o‐xylene, and CO, SO, and CHO are the main by‐products of oxidation.  相似文献   

11.
This study presents the synthesis and characterization of a fused, tricyclic 1,2,3,4‐tetrazine ring system. The molecule is synthesized in a three‐step process from 5,5′‐dinitro‐bis,1,2,4‐triazole via a di‐N‐amino compound. Oxidation to form the azo‐coupled fused tricyclic 1,2,3,4‐tetrazine is achieved using tert‐butyl hypochlorite as the oxidant. The di‐N‐amino compound and the desired fused tricyclic 1,2,3,4‐triazine display interesting thermal behavior and are predicted to be high‐performance energetic materials.  相似文献   

12.
4,6‐Bis(2‐hydroxyphenyl)‐2‐alkylpyrimidines with two anthryl or 9‐ethylnylanthryl substituents at the positions para to the OH groups prefer a U‐shaped conformation supported by two intramolecular OH ??? N hydrogen bonds in the solid state and in CDCl3 solution. The compound with a hexyl substituent on the pyrimidine group and two 9‐ethynylanthryl arms at the hydroxyphenyl groups forms a 1:1 complex with 2,4,7‐trinitrofluorenone. Its association constant Ka was estimated to be 2100 M ?1 at 298 K, which is larger than those of other molecular tweezers (Ka<1000 M ?1). DFT calculations suggested that the complex adopts a stable conformation supported by intramolecular hydrogen bonds among the OH groups and the pyrimidine ring as well as by intermolecular π–π interaction between the anthryl groups and 2,4,7‐trinitrofluorenone. Addition of nBu4NF to a solution of the molecular tweezers or their complexes causes the cleavage of one or two OH ??? N hydrogen bonds, formation of new O ??? HF hydrogen bonds, and changes in the molecular conformation. The resulting structure of the molecular tweezers contains nonparallel anthryl groups, which do not bind the guest molecule. Photochemical measurements on 4,6‐bis(2‐hydroxyphenyl)‐2‐methylpyrimidine with two anthryl substituents showed negligible luminescence (quantum yield ?<0.01), owing to photoinduced electron transfer of the molecule with a U‐shaped structure. However, the O‐hexylated compound exhibits emission from the anthryl groups with ?=0.39.  相似文献   

13.
We report on the one‐ and two‐water clusters of [4]helicene, the smallest polycyclic aromatic hydrocarbon with a helical sense, which were captured in the gas phase using high‐resolution rotational spectroscopy. The structures of the complexes are unambiguously revealed using microwave spectra of isotopically enriched species. In the one‐water cluster, the apparent splitting pattern is consistent with a tunneling motion that encompasses an exchange of strongly and weakly bonded water hydrogens. This motion is “locked” in the two‐water cluster. The relevant intermolecular contacts, symmetry, and aromaticity effects are unveiled for the microsolvated chiral topologies. These observations entail the first glance at the structures and internal dynamics of the water binding motifs of a chiral polycyclic aromatic hydrocarbon.  相似文献   

14.
The influence of peptide sequence and Leu chirality in linear and cyclic peptides containing 3-[2-(9-anthryl)benzoxazol-5-yl]alanine on interaction with β-cyclodextrin were studied using fluorescence and NMR spectroscopy. The analysis of enthalpy-entropy compensation effect (α=1.05±0.02 and TΔS0 0=15.1±0.5 kJ mol?1) indicates that the entropic contribution connected with the solvent reorganization is the major factor governing the peptides-β-cyclodextrin complexation. Moreover, spatial orientation of guest-host molecule depends more than association constant on Leu residue configuration. However, the cyclization of the peptide chain substantially decrease the association constant with β-CD. An analysis of 2D NMR spectra reveals that inclusion complex is formed by penetration of cyclodextrin cavity from wider and narrow rims by anthryl group in the case of Box(Ant)-SPKL or anthryl and Leu residues for Box(Ant)-SPK(D)L analogue.   相似文献   

15.
Contact ion pairs of aromatic radical anions, with a crown ether complex of potassium as cation in a neat aromatic hydrocarbon, can be obtained by reducing the aromatic hydrocarbon in which a small amount of crown ether is dissolved. The unpaired electron stays attached to one aromatic molecule during a time interval which is long on the ESR. time scale. The radicals are stabilized by ion-pair formation in the low polarity solvent. As a consequence of this stabilization, radicals of compounds with low electron affinities, e.g. mesitylene, can be prepared. Mesitylene, m-xylene, and toluene show additional hyperfine splitting in the ESR. spectra of their anion radical pairs of the order of 18 μT. The proton ENDOR. spectra have signals at the corresponding frequencies, indicating a hyperfine coupling with protons of the crown ether ligand. Using mixtures of two aromatic compounds, their relative electron affinities can be determined by studying the temperature dependence of the radical concentrations.  相似文献   

16.
Fused isoindolo[1,3]benzo(or thieno)oxazepines 8a,b and one of their positional isomers aromatic tricyclic N,O‐acetals 13b are reported to occur efficiently in a three‐step sequence from N‐hydroxy‐methylphthalimide (6) . The key step of this methodology is the intramolecular arylation of an endocyclic and/or exocyclic N‐acyliminium cation. The mechanism leading to these species, in particular to a tricyclic lactam 13b , is discussed.  相似文献   

17.
Superbenzoquinone (SBQ) is a quinone derived from a classic polycyclic aromatic hydrocarbon (PAH), hexa‐peri ‐hexabenzocoronene (so‐called “superbenzene”), and is a challenging synthetic target. Herein we report the successful synthesis and characterization of its derivatives. We reveal that the high reactivity of SBQ is due to its intrinsic open‐shell diradical character. Thus, two kinetically blocked SBQs, SBQ‐Me and SBQ‐Ph , were prepared by different synthetic strategies. 4‐tert ‐Butylphenyl‐substituted SBQ‐Ph demonstrated good stability and could be isolated in crystalline form. Both compounds have an open‐shell singlet ground state and show thermally populated paramagnetic activity. Our studies provide effective strategies toward stable quinone‐based diradicaloids.  相似文献   

18.
《化学:亚洲杂志》2018,13(18):2691-2699
The chiral, triangular‐shape hexaimine macrocycles (trianglimines), bearing bulky alkynyl or aryl substituents were synthesized and studied by means of experimental and theoretical methods. The macrocyclization reactions are driven by the extraordinary stability of the trianglimine ring and provided products with high yields. Electrostatic repulsion between imine nitrogen atoms and the substituents forced an anti conformation of the aromatic linkers. Although the DFT‐optimized structure of 7 is D3 symmetrical, in the crystal, the macrocycle adopts a bowl‐like molecular shape. The macrocycle self‐assembles into tail‐to‐tail dimers by mutual interdigitation of aromatic moieties. In contrast, macrocycle 8 adopts a rigid pillararene‐like conformation. The nature of the substituent significantly affects the electronic properties of the linker. As a result, unexpectedly high exciton Cotton effects are observed in the electronic circular dichroism (ECD) spectra. The origin of these effects was subject of an in‐depth study.  相似文献   

19.
The efficacy of organophosphorus radicals as anticoking agents was subjected to a computational study in which a representative set of radicals derived from industrially relevant organophosphorus additives was used to explore competitive reaction pathways on the graphene-like coke surface formed during thermal cracking. The aim was to investigate the nature of the competing reactions of different organophosphorus radicals on coke surfaces, and elucidate their mode of attack and inhibiting effect on the forming coke layer by use of contemporary computational methods. Density functional calculations on benzene and a larger polyaromatic hydrocarbon, namely, ovalene, showed that organophosphorus radicals have a high propensity to add to the periphery of the coke surface, inhibiting methyl radical induced hydrogen abstraction, which is known to be a key step in coke growth. Low addition barriers reported for a phosphatidyl radical suggest competitive aptitude against coke formation. Moreover, organophosphorus additives bearing aromatic substituents, which were shown to interact with the coke surface through dispersive π-π stacking interactions, are suggested to play a nontrivial role in hindering further stacking among coke surfaces. This may be the underlying rationale behind experimental observation of softer coke in the presence of organophosphorus radicals. The ultimate goal is to provide information that will be useful in building single-event microkinetic models. This study presents pertinent information on potential reactions that could be taken up in these models.  相似文献   

20.
A hydrogen‐bonded complex was successfully isolated as crystals from the anthranol/anthroxyl pair in the self‐exchange proton‐coupled electron transfer (PCET) reaction. The anthroxyl radical was stabilized by the introduction of a 9‐anthryl group at the carbon atom at the 10‐position. The hydrogen‐bonded complex with anthranol self‐assembled by π–π stacking to form a one‐dimensional chain in the crystal. The conformation around the hydrogen bond was similar to that of the theoretically predicted PCET activated complex of the phenol/phenoxyl pair. X‐ray crystal analyses revealed the self‐exchange of a hydrogen atom via the hydrogen bond, indicating the activation of the self‐exchange PCET reaction between anthranol and anthroxyl. Magnetic measurements revealed that magnetic ordering inside the one‐dimensional chain caused the inactivation of the self‐exchange reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号