首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Helical micro/nanomotors (MNMs) can be propelled by external fields to swim through highly viscous fluids like complex biological environments, which promises miniaturized robotic tools to perform assigned tasks at small scales. However, the catalytic propulsion method, most widely adopted to drive MNMs, is seldom studied to actuate helical MNMs. Herein, we report catalytic helical carbon MNMs (CHCM) by sputtering Pt onto helical carbon nano‐coils (HCNC) that are in bulk prepared by a thermal chemical vapor deposition method. The Pt‐triggered H2O2 decomposition can drive the MNMs by an electrokinetic mechanism. The MNMs demonstrate versatile motion behaviors including both directional propulsion and rotation depending on the turn number of the carbon helix. Besides, due to the ease of surface functionalization on carbon and other properties such as biocompatibility and photothermal effect, the helical carbon MNMs promise multifunctional applications for biomedical or environmental applications.  相似文献   

2.
Triangulene and its higher homologues are a class of zigzag‐edged triangular graphene molecules (ZTGMs) with high‐spin ground states. These open‐shell molecules are predicted to host ferromagnetically coupled edge states with net spin values scaling with molecular size and are therefore considered promising candidates for future molecular spintronics applications. Unfortunately, the synthesis of unsubstituted [n]triangulenes and the direct observation of their edge states have been a long‐standing challenge due to a high reactivity towards oxygen. However, recent advances in precursor design enabled the on‐surface synthesis and characterization of unsubstituted [3]‐, [4]‐, and [5]triangulene. In this Minireview, we will highlight key aspects of this rapidly developing field, ranging from the principles of precursor design to synthetic strategies and characterization of a homologous series of triangulene molecules synthesized on‐surface. We will also discuss challenges and future directions.  相似文献   

3.
Triangulene and its higher homologues are a class of zigzag-edged triangular graphene molecules (ZTGMs) with high-spin ground states. These open-shell molecules are predicted to host ferromagnetically coupled edge states with net spin values scaling with molecular size and are therefore considered promising candidates for future molecular spintronics applications. Unfortunately, the synthesis of unsubstituted [n]triangulenes and the direct observation of their edge states have been a long-standing challenge due to a high reactivity towards oxygen. However, recent advances in precursor design enabled the on-surface synthesis and characterization of unsubstituted [3]-, [4]-, and [5]triangulene. In this Minireview, we will highlight key aspects of this rapidly developing field, ranging from the principles of precursor design to synthetic strategies and characterization of a homologous series of triangulene molecules synthesized on-surface. We will also discuss challenges and future directions.  相似文献   

4.
The development of two‐dimensional (2D) materials have attracted increasing interest due to their unique structure and various potential applications such as opto‐electronic devices and photocatalysis. Our group have contributed to this exciting field by creating novel preparation methods for a various of 2D materials including transition metal dichalcogenides (TMDs), carbon nitrides and single elemental 2D materials from Group 15. Particularly, employing powerful time‐resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy, we elucidated the excited‐state dynamics of 2D materials behind their outstanding performance in photocatalytic and photonic devices. Therefore in this account, we focus on the effective fabrication methods of 2D materials and their photoinduced excited‐state dynamics. Following the introduction in Part 1 , we will summarize our novel strategies for fabricating 2D materials ( Part 2 ). Then in Part 3 we will introduce the instrumentation for exploring the photoinduced excited‐state dynamics of the 2D materials spanning a wide time scale from ultrafast fs to slow ms. Part 4 details the applications of the 2D materials in photocatalysis and nonlinear optics determined by their excited‐state physics and chemistry. Part 5 of perspectives summarizes a few future trends of 2D materials on a series of issues like fabrications, dynamic investigations and photonic optoelectronic applications. Collective efforts through researchers from interdisciplinary fields are expected to further push the exciting territory towards a new horizon.  相似文献   

5.
Core–shell particles have attracted increased interest in the past two decades. The properties of these composite materials are a symbiosis between the core and shell features which neither can exhibit separately. Polypeptide composite particles (PCPs) are a newly expanding field of hybrid materials with potential future impact in a broad variety of applications. In this review, we present an overview about the progress made on designing PCPs. Past and present limitations in the fabrication of the cores and shells alone will be outlined. A special emphasis will be placed on the future challenges directed to design better materials by expanding the architectural repertoire which will benefit their functionality and their range of applications. The review also presents possible future trends and challenges in engineering polypeptide-based materials as platforms for targeted applications.  相似文献   

6.
Background Pillar[n]arene(PA[n])contains a symmetrical structures,where para-bridge connection between the units looks like a column-like or pillar shape and polygonal structure from side and top views,respectively.The attached groups to the PA[n]are pointing towards the opposite directions along the columnar axis.  相似文献   

7.
Recently published syntheses, reactions and characterizations of unusual unsaturated ring strained Group 4 metallocene metallacycles like metalla-cyclocumulenes, -cycloallenes and -cycloalkynes with different ring size are updated for the last three years. There exist for some of these metallacycles, depending on the ring size, 7-, 5- and 4-membered compounds. The new results for these metallacycles are summarized here and considered in addition to the former published results. Additionally, several compounds of this type were now characterized by new reactions. For a better understanding of these compounds, some spectroscopical methods as well as theoretical calculations were published. Despite of these all-C-metallacycles, only in some cases the syntheses and reactions for the corresponding hetero-metallacycles were published too. Examples for these metallaheterocyclic compounds will not be considered in this article. All these unusual ring strained compounds have a great potential for a lot of interesting synthetic applications in the future. Additionally, they are very interesting from the theoretical point of view.  相似文献   

8.
Unprecedented opportunities exist for the generation of advanced nanotechnologies based on synthetic micro/nanomotors (MNMs), such as active transport of medical agents or the removal of pollutants. In this regard, great efforts have been dedicated toward controlling MNM motion (e.g., speed, directionality). This was generally performed by precise engineering and optimizing of the motors′ chassis, engine, powering mode (i.e., chemical or physical), and mechanism of motion. Recently, new insights have emerged to control motors mobility, mainly by the inclusion of different modes that drive propulsion. With high degree of synchronization, these modes work providing the required level of control. In this Minireview, we discuss the diverse factors that impact motion; these include MNM morphology, modes of mobility, and how control over motion was achieved. Moreover, we highlight the main limitations that need to be overcome so that such motion control can be translated into real applications.  相似文献   

9.
In this Concept article, recent advances are highlighted in the synthesis and applications of anomeric nucleophiles, a class of carbohydrates in which the C1 carbon bears a carbon–metal bond. First, the advantages of exploiting the carboanionic reactivity of carbohydrates and the methods for the synthesis of mono- and oligosaccharide stannanes are discussed. Second, recent developments in the glycosyl cross-coupling method resulting in the transfer of anomeric configuration from C1 stannanes to C-aryl glycosides are reviewed. These highly stereoretentive processes are ideally suited for the preparation of carbohydrate-based therapeutics and were demonstrated in the synthesis of antidiabetic drugs. Next, the application of the glycosyl cross-coupling method to the preparation of Se-glycosides and to glycodiversification of small molecules and peptides are highlighted. These reactions proceed with exclusive anomeric control for a broad range of substrates and tolerate carbohydrates with free hydroxyl groups. Taken together, anomeric nucleophiles have emerged as powerful tools for the synthesis of oligosaccharides and glycoconjugates and their future applications will open new possibilities to incorporate saccharides into small molecules and biologics.  相似文献   

10.
Substituted cyclopropenes have recently attracted attention as stable “mini‐tags” that are highly reactive dienophiles with the bioorthogonal tetrazine functional group. Despite this interest, the synthesis of stable cyclopropenes is not trivial and their reactivity patterns are poorly understood. Here, the synthesis and comparison of the reactivity of a series of 1‐methyl‐3‐substituted cyclopropenes with different functional handles is described. The rates at which the various substituted cyclopropenes undergo Diels–Alder cycloadditions with 1,2,4,5‐tetrazines were measured. Depending on the substituents, the rates of cycloadditions vary by over two orders of magnitude. The substituents also have a dramatic effect on aqueous stability. An outcome of these studies is the discovery of a novel 3‐amidomethyl substituted methylcyclopropene tag that reacts twice as fast as the fastest previously disclosed 1‐methyl‐3‐substituted cyclopropene while retaining excellent aqueous stability. Furthermore, this new cyclopropene is better suited for bioconjugation applications and this is demonstrated through using DNA templated tetrazine ligations. The effect of tetrazine structure on cyclopropene reaction rate was also studied. Surprisingly, 3‐amidomethyl substituted methylcyclopropene reacts faster than trans‐cyclooctenol with a sterically hindered and extremely stable tert‐butyl substituted tetrazine. Density functional theory calculations and the distortion/interaction analysis of activation energies provide insights into the origins of these reactivity differences and a guide to the development of future tetrazine coupling partners. The newly disclosed cyclopropenes have kinetic and stability advantages compared to previously reported dienophiles and will be highly useful for applications in organic synthesis, bioorthogonal reactions, and materials science.  相似文献   

11.
Organic photovoltaic materials and thin-film solar cells   总被引:1,自引:0,他引:1  
Organic photovoltaic materials are of interest for their future applications in solar cells. Compared to inorganic or dye-sensitized solar cells, organic photovoltaic (OPV) cells offer a huge potential for low-cost large-area solar cells because of their low material consumption per area and easy processing. In the last few years, there have seen an unprecedented growth of interest in OPVs with power conversion efficiency of over 5% attainable. However, OPV’s performance is limited by the narrow light absorption, poor charge carries mobility, and low stability of organic materials, all of which confine its large-scale commercial applications. This review will develop a discussion on the OPV device configuration and operational mechanism after an introduction of the general features of OPV materials. Subsequently, the typical progresses in materials development and performance evolution in recent years will be summarized. The future challenges and prospects faced by organic photovoltaics will be discussed. Finally, the innovative strategy on research of molecular design and device optimization will be suggested with the aim for practical application.  相似文献   

12.
13.
The study of non-natural products has led to a broad understanding of bonding and reactivity in organic chemistry. Many times, compounds thought impossible have been realized in the course of such studies. Cubane, a landmark in the world of “impossible” compounds, has been found to have a rich chemistry, full of the unexpected. The recent renaissance of cubane chemistry, triggered by potential applications of the system to the production of high-energy fuels and the like, has led to many discoveries including the first methods for systematic substitution on strained, saturated systems and a new process for the metalation of arenes, ortho magnesiation. Reactive intermediates with exceptional bonding parameters have been uncovered and characterized including 1(9)-homocubene, the most twisted olefin; cubene, the most pyramidalized olefin; cubyl cation, once the “least likely” cation; cubylmethyl radical, a saturated radical that rearranges on the picosecond timescale; and many other extraordinary species. There is certainly good reason to believe that future work in the cubane arena will be at least as productive (probably more so), and that it will help develop a deeper understanding of chemistry.  相似文献   

14.
This account provides an overview of current research activities that focus on the synthesis and applications of nanomaterials from noble metal (e.g., Au, Ag, Pd) and iron oxide (Fe3O4) hybrids. An introduction to the synthetic strategies that have been developed for generating M–Fe3O4 nanomaterials with different novel structures is presented. Surface functionalization and bioconjugation of these hybrid nanoparticles and nanocomposites are also reviewed. The utilization of the advantageous properties of both noble metals and iron oxide for a variety of applications, such as theranostics, gene delivery, biosensing, cell sorting, bioseparation, and catalysis, is discussed and highlighted. Finally, future trends and perspectives of these sophisticated nanocomposites are outlined. The fundamental requirements underpinning the effective preparation of M–FexOy hybrid nanomaterials shed light on the future development of heterogeneous catalysts, nanotheranostics, nanomedicines, and other chemical technologies.  相似文献   

15.
The engineering of self‐propelled micro‐/nanomotors (MNMs) with continuously variable speeds, akin to macroscopic automobiles equipped with a continuously variable transmission, is still a huge challenge. Herein, after grafting with salt‐responsive poly[2‐(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC) brushes, bubble‐propelled Janus microcapsule motors with polyelectrolyte multilayers exhibited adjustable speeds when the type and concentration of the counterion was changed. Reversible switching between low‐ and high‐speed states was achieved by modulating the PMETAC brushes between hydrophobic and hydrophilic configurations by ion exchange with ClO4? and polyphosphate anions. This continuously variable regulation enabled control of the speed in an accurate and predictable manner and an autonomous response to the local chemical environment. This study suggests that the integration of polymer brushes with precisely adjustable responsiveness offers a promising route for motion control of smart MNMs that act like their counterparts in living systems.  相似文献   

16.
Summary. Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D.In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches.  相似文献   

17.
Tailor‐made polymers containing specific chemical functionalities have ushered in a number of emerging fields in polymer science. In most of these next‐generation applications the focus of the community has centered upon closed‐shell macromolecules. Conversely, macromolecules containing stable radical sites have been less studied despite the promise of this evolving class of polymers. In particular, radical‐containing macromolecules have shown great potential in magnetic, energy storage, and biomedical applications. Here, the progress regarding the syntheses of open‐shell containing polymers are reviewed in two distinct subclasses. In the first, the syntheses of radical polymers (i.e., materials composed of non‐conjugated macromolecular backbones and with open‐shell units present on the polymer pendant sites) are described. In the second, polyradical (i.e., macromolecules containing stabilized radical sites either within the macromolecular backbone or those containing radical sites that are stabilized through a large degree of conjugation) synthetic schemes are presented. Thus, the state‐of‐the‐art in open‐shell macromolecular syntheses will be reported and future means by which to advance the current archetype will be discussed. By detailing the synthetic pathways possible for, and the inherent synthetic limitations of, the creation of these functional polymers, the community will be able to extend the bounds of the radical‐containing macromolecular paradigm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1875–1894  相似文献   

18.
Taking advantages of the impressing behaviors of room-temperature phosphorescence (RTP), the explorations in RTP materials are not only limited to efficient emission and ultralong lifetime of phosphorescence. The discovery and creation of stimuli-responsive properties have become the major pursuit, which will lay a solid foundation for future applications in RTP materials. Based on this, a review centered on recent progress of stimuli-responsive RTP materials is summarized to show frontier development in polymer systems. Different kinds of stimuli-responsive factors including light, oxygen, temperature, mechanical force and pH regulations are investigated in this review. Many potential applications and promising strategies are deeply discussed with the hope to assist future studies in this area.  相似文献   

19.
Aromatic azobenzene derivatives are outstanding organic photochromic compounds that possess unique photochemical properties. These compounds are widely used in research and development for various applications, especially in information storage, owing to their ability to isomerize between cis (Z) and trans (E) forms under the influence of light of different wavelengths. On account of these advantages, many efforts have been made to generalize the use of azobenzene derivatives. Furthermore, ferrocene‐based polymers and derivatives are promising candidates for functional materials due to their unique redox properties. By interlinking ferrocene with azobenzene, novel functional materials can be obtained that will integrate the excellent properties of both and will provide new applications in various fields including information storage, ion recognition, molecular devices, etc. This article provides an overview of the synthesis, properties and applications of novel ferrocene‐based polymers and derivatives containing azobenzene units. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D.In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号