首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrogen‐abstraction/acetylene‐addition (HACA) mechanism has been central for the last decades in attempting to rationalize the formation of polycyclic aromatic hydrocarbons (PAHs) as detected in carbonaceous meteorites such as in Murchison. Nevertheless, the basic reaction mechanisms leading to the formation of even the simplest tricyclic PAHs like anthracene and phenanthrene are still elusive. Here, by exploring the previously unknown chemistry of the ortho ‐biphenylyl radical with acetylene, we deliver compelling evidence on the efficient synthesis of phenanthrene in carbon‐rich circumstellar environments. However, the lack of formation of the anthracene isomer implies that HACA alone cannot be responsible for the formation of PAHs in extreme environments. Considering the overall picture, alternative pathways such as vinylacetylene‐mediated reactions are required to play a crucial role in the synthesis of complex PAHs in circumstellar envelopes of dying carbon‐rich stars.  相似文献   

2.
Role of phenyl radicals in the growth of polycyclic aromatic hydrocarbons   总被引:1,自引:0,他引:1  
To investigate the role of phenyl radical in the growth of PAHs (polycyclic aromatic hydrocarbons), pyrolysis of toluene with and without benzene has been studied by using a heatable tubular reactor couple with an in-situ sampling vacuum ultraviolet (VUV) single photon ionization (SPI) time-of-flight mass spectrometer (TOFMS) at temperatures 1155-1467 K and a pressure of 10.02 Torr with 0.56 s residence time. When benzene was added, a significant increase of phenyl addition products (biphenyl, terphenyl, and triphenylene) was observed and the mass spectra showed a clear regular sequence with an interval of approximately 74 mass number, corresponding to the phenyl addition (+C6H5) followed by H-elimination (-H) and cyclization (-H2). The analysis showed that the PAC (phenyl addition/cylization) mechanism is efficient for the growth of PAHs without a triple fusing site, for which the HACA (hydrogen abstraction/C2H2 addition) step is inefficient, and produces PAHs with five-membered rings. The PAC process was also suggested to be efficient in the subsequent growth of PAHs with five-membered rings. The role of the PAC mechanism in combustion conditions is discussed in relation to the importance of disordered five-membered ring structure in fullerene or soot core.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are omnipresent in the interstellar medium (ISM) and also in carbonaceous meteorites (CM) such as Murchison. However, the basic reaction routes leading to the formation of even the simplest PAH—naphthalene (C10H8)—via the hydrogen‐abstraction/acetylene‐addition (HACA) mechanism still remain ambiguous. Here, by revealing the uncharted fundamental chemistry of the styrenyl (C8H7) and the ortho‐vinylphenyl radicals (C8H7)—key transient species of the HACA mechanism—with acetylene (C2H2), we provide the first solid experimental evidence on the facile formation of naphthalene in a simulated combustion environment validating the previously postulated HACA mechanism for these two radicals. This study highlights, at the molecular level spanning combustion and astrochemistry, the importance of the HACA mechanism to the formation of the prototype PAH naphthalene.  相似文献   

4.
For the last decades, the hydrogen-abstraction−acetylene-addition (HACA) mechanism has been widely invoked to rationalize the high-temperature synthesis of PAHs as detected in carbonaceous meteorites (CM) and proposed to exist in the interstellar medium (ISM). By unravelling the chemistry of the 9-phenanthrenyl radical ([C14H9].) with vinylacetylene (C4H4), we present the first compelling evidence of a barrier-less pathway leading to a prototype tetracyclic PAH – triphenylene (C18H12) – via an unconventional hydrogen abstraction–vinylacetylene addition (HAVA) mechanism operational at temperatures as low as 10 K. The barrier-less, exoergic nature of the reaction reveals HAVA as a versatile reaction mechanism that may drive molecular mass growth processes to PAHs and even two-dimensional, graphene-type nanostructures in cold environments in deep space thus leading to a better understanding of the carbon chemistry in our universe through the untangling of elementary reactions on the most fundamental level.  相似文献   

5.
The ultraviolet laser desorption/ionization of polyaromatic hydrocarbons (PAHs) has been investigated under different background pressures of an inert gas (up to 1.2 mbar of N2) in the ion source of a hybrid, orthogonal‐extracting time‐of‐flight mass spectrometer (oTOF‐MS). The study includes an ensemble of six model PAHs with isolated single polyaromatic cores and four ones with multiple cross‐linked aromatic and polyaromatic cores. In combination with a weak ion extraction field, the variation of the buffer gas pressure allowed to control the degree of collisional cooling of the desorbed PAHs and, thus, to modulate their decomposition into fragments. The dominant fragmentation channels observed are related to dehydrogenation of the PAHs, in most cases through the cleavage of even numbers of C―H bonds. Breakage of C―C bonds leading to the fragmentation of rings, side chains and core linkages is also observed, in particular, at low buffer gas pressures. The precise patterns of the combined fragmentation processes vary significantly between the PAHs. The highest abundances of molecular PAH ions and cleanest mass spectra were consistently obtained at the highest buffer gas pressure of 1.2 mbar. The effective quenching of the fragmentation pathways at this elevated pressure improves the sensitivity and data interpretation for analytical applications, although the fragmentation of side chains and of bonds between (poly)aromatic cores is not completely suppressed in all cases. Moreover, these results suggest that the detected fragments are generated through thermal equilibrium processes rather than as a result of rapid photolysis. This assumption is further corroborated by a laser desorption/ionization post‐source decay analysis using an axial time‐of‐flight MS. In line with these findings, covalent oligomers of the PAHs, which are presumably formed by association of two or more dehydrogenated fragments, are detected with higher abundances at the lower buffer gas pressures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A unified low‐temperature reaction mechanism on the formation of acenes, phenacenes, and helicenes—polycyclic aromatic hydrocarbons (PAHs) that are distinct via the linear, zigzag, and ortho‐condensed arrangements of fused benzene rings—is revealed. This mechanism is mediated through a barrierless, vinylacetylene mediated gas‐phase chemistry utilizing tetracene, [4]phenacene, and [4]helicene as benchmarks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures. This mechanism opens up an isomer‐selective route to aromatic structures involving submerged reaction barriers, resonantly stabilized free‐radical intermediates, and systematic ring annulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space. Connecting helicene templates to the Origins of Life ultimately changes our hypothesis on interstellar carbon chemistry.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) are regarded as key intermediates in the molecular growth process that forms soot from incomplete fossil fuel combustion. Although heavily researched, the reaction mechanisms for PAH formation have only been investigated through bulk experiments; therefore, current models remain conjectural. We report the first observation of a directed synthesis of a PAH under single‐collision conditions. By using a crossed‐molecular‐beam apparatus, phenyl radicals react with C3H4 isomers, methylacetylene and allene, to form indene at collision energies of 45 kJ mol?1. The reaction dynamics supported by theoretical calculations show that both isomers decay through the same collision complex, are indirect, have long lifetimes, and form indene in high yields. Through the use of deuterium‐substituted reactants, we were able to identify the reaction pathway to indene.  相似文献   

8.
Pressurised microwave-assisted extraction was used to extract a complex mixture containing polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and heavy n-alkanes from a particularly refractory carbonaceous material resulting from the combustion in a diesel engine. A second-order central composite design was used to determine the optimal conditions of extraction in terms of time, temperature, volume and nature of extracting solvent from spiked diesel soots. To begin, methylene chloride, tetrahydrofuran and chloroform were tested for extracting the spiked diesel particulates; however, the nature of these solvents was not really an influential factor. Volume was the most influential factor and was kept at a medium level to enhance the extraction of heavy PAHs without introducing an important dilution factor. Temperature and time were not influential as main factors but interacted with the other factors. Finally, high temperature and duration associated with a medium volume of methylene chloride were better for the extractions. After this optimisation, five-ring and six-ring PAHs were nevertheless not satisfactorily desorbed. Other solvents were therefore tested. Only aromatic ones, and particularly heterocyclic aromatic solvents, managed to desorb the heaviest PAHs. Pyridine, with its both aromatic and its basic character, was the most successful solvent. Desorption was even complete with an addition of 17% of diethylamine into pyridine. So, using MAE, we succeeded in extracting quantitatively, from the spiked refractory diesel soot surface, two-ring to six-ring PAHs, heavy n-alkanes and short nitrated PAHs. However, heavy nitrated PAHs were better extracted with a small addition of acetic acid (1%) into pyridine instead of a basic cosolvent.  相似文献   

9.
Carbonaceous material in the particulate matter was measured in Rome urban area. The carbonaceous material constitutes a significant component of total aerosol mass (30-40%) and it is composed by two main fractions, elemental carbon (EC) and organic carbon (OC). EC is essentially a primary pollutant emitted directly from incomplete combustion processes whereas OC has both primary and secondary origin. A chemical OC investigation has been carried out in order to determine the nalkanes, the n-alkanoic acids, the polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs by means an HRGC-MS procedure. A different seasonal distribution of these compound classes attributed to photochemical radical activity (n-alkanes and PAH decrease in spring- and summertime) and to biogenic plant emission (n-alkanoic acid increase in summertime) has been evidenced.  相似文献   

10.
The gas-phase reaction products of toluene pyrolysis with and without acetylene addition produced in a flow tube reactor at pressures of 8.15-15.11 Torr and temperatures of 1136-1507 K with constant residence time (0.56 s) have been detected in an in situ direct sampling mass spectrometric study by using a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry technique. Those products range from methyl radical to large polycyclic aromatic hydrocarbons (PAHs) of mass 522 amu (C(42)H(18)) including smaller species, radicals, polyynes, and PAHs, together with ethynyl, methyl, and phenyl PAHs. On the basis of observed mass spectra, the chemical kinetic mechanisms of the formation of products are discussed. Especially, acetylene is mixed with toluene to understand the effect of the hydrogen abstraction and acetylene addition (HACA) mechanism on the formation pathways of products in toluene pyrolysis. The most prominent outputs of this work are the direct detection of large PAHs and new reaction pathways for the formation of PAHs with the major role of cyclopenta-fused radicals. The basis of this new reaction route is the appearance of different sequences of mass spectra that well explain the major role of aromatic radicals mainly cyclopenta fused radicals of PAHs resulting from their corresponding methyl PAHs, with active participation of c-C(5)H(5), C(6)H(5), C(6)H(5)CH(2) ,and C(9)H(7) in the formation of large PAHs. The role of the HACA only seemed important for the formation of stable condensed PAHs from unstable primary PAHs with zigzag structure (having triple fusing sites) in one step by ring growth with two carbon atoms.  相似文献   

11.
A representative, low‐temperature gas‐phase reaction mechanism synthesizing polyacenes via ring annulation exemplified by the formation of pentacene (C22H14) along with its benzo[a]tetracene isomer (C22H14) is unraveled by probing the elementary reaction of the 2‐tetracenyl radical (C18H11.) with vinylacetylene (C4H4). The pathway to pentacene—a prototype polyacene and a fundamental molecular building block in graphenes, fullerenes, and carbon nanotubes—is facilitated by a barrierless, vinylacetylene mediated gas‐phase process thus disputing conventional hypotheses that synthesis of polycyclic aromatic hydrocarbons (PAHs) solely proceeds at elevated temperatures. This low‐temperature pathway can launch isomer‐selective routes to aromatic structures through submerged reaction barriers, resonantly stabilized free‐radical intermediates, and methodical ring annulation in deep space eventually changing our perception about the chemistry of carbon in our universe.  相似文献   

12.
An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions.  相似文献   

13.
The crossed beam reactions of the phenyl radical (C(6)H(5), X(2)A(1)) with 1,3-butadiene (C(4)H(6), X(1)A(g)) and D6-1,3-butadiene (C(4)D(6), X(1)A(g)) as well as of the D5-phenyl radical (C(6)D(5), X(2)A(1)) with 2,3-D2-1,3-butadiene and 1,1,4,4-D4-1,3-butadiene were carried out under single collision conditions at collision energies of about 55 kJ mol(-1). Experimentally, the bicyclic 1,4-dihydronaphthalene molecule was identified as a major product of this reaction (58 ± 15%) with the 1-phenyl-1,3-butadiene contributing 34 ± 10%. The reaction is initiated by a barrierless addition of the phenyl radical to the terminal carbon atom of the 1,3-butadiene (C1/C4) to form a bound intermediate; the latter underwent hydrogen elimination from the terminal CH(2) group of the 1,3-butadiene molecule leading to 1-phenyl-trans-1,3-butadiene through a submerged barrier. The dominant product, 1,4-dihydronaphthalene, is formed via an isomerization of the adduct by ring closure and emission of the hydrogen atom from the phenyl moiety at the bridging carbon atom through a tight exit transition state located about 31 kJ mol(-1) above the separated products. The hydrogen atom was found to leave the decomposing complex almost parallel to the total angular momentum vector and perpendicularly to the rotation plane of the decomposing intermediate. The defacto barrierless formation of the 1,4-dihydronaphthalene molecule involving a single collision between a phenyl radical and 1,3-butadiene represents an important step in the formation of polycyclic aromatic hydrocarbons (PAHs) and their partially hydrogenated counterparts in combustion and interstellar chemistry.  相似文献   

14.
15.
Halogenated buckybowls or bowl‐shaped polycyclic aromatic hydrocarbons (BS‐PAHs) are key building blocks for the “bottom‐up” synthesis of various carbon‐based nanomaterials with outstanding potential in different fields of technology. The current state of the art provides quite a limited number of synthetic pathways to BS‐PAHs; moreover, none of these approaches show high selectivity and tolerance of functional groups. Herein we demonstrate an effective route to BS‐PAHs that includes directed intramolecular aryl–aryl coupling through C−F bond activation. The coupling conditions were found to be completely tolerant toward aromatic C−Br and C−Cl bonds, thus allowing the facile synthesis of rationally halogenated buckybowls with an unprecedented level of selectivity. This finding opens the way to functionalized BS‐PAH systems that cannot be obtained by alternative methods.  相似文献   

16.
Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects on the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a 'closed'-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(-1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.  相似文献   

17.
Enantioselective addition of diethylzinc to a series of aromatic aldehydes was developed using a modular amino acid amide chiral ligand (2S)‐3‐phenyl‐N‐((R)‐1‐phenyl‐ethyl)‐2‐(tosylamino)propanamide without using titanium complex. The catalytic system employing 10 mol% of 1g was found to promote the addition of diethylzinc (ZnEt2) to a wide range of aromatic aldehydes with electron‐donating and electron‐withdrawing substituents, giving up to 82% ee of the corresponding secondary alcohol under mild conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) represent an emerging class of π‐conjugated molecules in the area of optoelectronic devices and materials. Unprecedented synthetic routes to various PAHs from simple phenol derivatives by a palladium‐catalyzed annulative dimerization of phenylene triflate through twofold inter‐ and intramolecular C?H activation have been established. The initially formed partially fused PAHs can be smoothly transformed into a variety of fully fused PAHs by the Scholl reaction. Furthermore, the reactions of phenanthrene‐substituted aryl triflates proceeded regioselectively. The findings inspired the development of a rapid and efficient synthesis of polybenzoacene derivatives. This study not only allows transformation of phenyl triflates, but also discloses a new retrosynthetic strategy towards PAHs, especially polybenzoacenes.  相似文献   

19.
Several H?H bond forming pathways have been proposed for the hydrogen evolution reaction (HER). Revealing these HER mechanisms is of fundamental importance for the rational design of catalysts and is also extremely challenging. Now, an unparalleled example of switching between homolytic and heterolytic HER mechanisms is reported. Three nickel(II) porphyrins were designed and synthesized with distinct steric effects by introducing bulky amido moieties to ortho‐ or para‐positions of the meso‐phenyl groups. These porphyrins exhibited different catalytic HER behaviors. For these Ni porphyrins, although their 1e‐reduced forms are active to reduce trifluoroacetic acid, the resulting Ni hydrides (depending on the steric effects of porphyrin rings) have different pathways to make H2. Understanding HER processes, especially controllable switching between homolytic and heterolytic H?H bond formation pathways through molecular engineering, is unprecedented in electrocatalysis.  相似文献   

20.
Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号