首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The depletion of fossil fuels has accelerated the search for clean, sustainable, scalable, and environmentally friendly alternative energy sources. Hydrogen is a potential energy carrier because of its advantageous properties, and the electrolysis of water is considered as an efficient method for its industrial production. However, the high-energy conversion efficiency of electrochemical water splitting requires cost-effective and highly active electrocatalysts. Therefore, researchers have aimed to develop high-performance electrode materials based on non-precious and abundant transition metals for conversion devices. Moreover, to further reduce the cost and complexity in real-world applications, bifunctional catalysts that can be simultaneously active on both the anodic (i.e., oxygen evolution reaction, OER) and cathodic (i.e., hydrogen evolution reaction, HER) sides are economically and technically desirable. This Minireview focuses on the recent progress in transition-metal-based materials as bifunctional electrocatalysts, including several promising strategies to promote electrocatalytic activities for overall water splitting in alkaline media, such as chemical doping, defect (vacancy) engineering, phase engineering, facet engineering, and structure engineering. Finally, the potential for further developments in rational electrode materials design is also discussed.  相似文献   

2.
Bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte may improve the efficiency of overall water splitting. Nickel cobaltite (NiCo2O4) has been considered a promising electrode material for the OER. However, NiCo2O4 that can be used as an electrocatalyst in HER has not been studied yet. Herein, we report self‐assembled hierarchical NiCo2O4 hollow microcuboids for overall water splitting including both the HER and OER reactions. The NiCo2O4 electrode shows excellent activity toward overall water splitting, with 10 mA cm?2 water‐splitting current reached by applying just 1.65 V and 20 mA cm?2 by applying just 1.74 V across the two electrodes. The synthesis of NiCo2O4 microflowers confirms the importance of structural features for high‐performance overall water splitting.  相似文献   

3.
周澳  郭伟健  王月青  张进涛 《电化学》2022,28(9):2214007
电解水是有效的产氢方式之一, 开发具有高催化活性的电极材料是当前电解水的研究热点,但仍面临诸多挑战。 本研究报告了一种通过焦耳热技术快速制备多金属异质结构, 并将其用作电解水的双功能电催化剂, 展现出优异的电解水催化活性。通过焦耳热处理三种金属前驱涂覆的碳布, Mo2C和CoO/Fe3O4异质结构形成。当其用作析氢(HER)和析氧(OER)的双功能催化剂时, 仅需121 mV和268 mV的过电位,可以实现10 mA·cm-2的电流密度。当用于两电极电解水时, MoC/FeO/CoO/CC作为阳极和阴极催化剂表现出优异的电催化性能和长期稳定性, 仅需1.69 V即可实现10 mA·cm-2的电流密度, 并且展现出25小时的稳定性。本研究通过简单、 快速的焦耳热技术实现了双金属/多金属异质结构的构筑,并应用于高效水电解,为合理设计多金属异质结构提供指导。  相似文献   

4.
A new hatted 1T/2H-phase MoS2 on Ni3S2 nanorods, as a bifunctional electrocatalyst for overall water splitting in alkaline media, is prepared through a simple one-pot hydrothermal synthesis. The hat-rod structure is composed mainly of Ni3S2, with 1T/2H-MoS2 adhered to the top of the growth. Aqueous ammonia plays an important role in forming the 1T-phase MoS2 by twisting the 2H-phase transition and expanding the interlayer spacing through the intercalation of NH3/NH4+. Owing to the special “hat-like” structure, the electrons conduct easily from Ni foam along Ni3S2 to MoS2, and the catalyst particles maintain sufficient contact with the electrolyte, with gaseous molecules produced by water splitting easily removed from the surface of the catalyst. Thus, the electrocatalytic performance is enhanced, with an overpotential of 73 mV, a Tafel slope of 79 mV dec−1, and excellent stability, and the OER demonstrates an overpotential of 190 mV and Tafel slope of 166 mV dec−1.  相似文献   

5.
6.
The development of highly efficient non-precious metal catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is key for large-scale hydrogen evolution through water splitting technology. Here, we report an air-stable Cu-based nanostructure consisting of Mn doped CuCl and CuO (CuCl/CuO(Mn)-NF) as a dual functional electrocatalyst for water splitting. CuCl is identified as the main active component, together with Mn doping and the synergistic effect between CuCl and CuO are found to make responsibility for the excellent OER and HER catalytic activity and stability. The assembled electrolyzes also exhibit decent water splitting performance. This work not only provides a simple method for preparing Cu-based composite catalyst, but also demonstrates the great potential of Cu-based non-noble metal electrocatalysts for water splitting and other renewable energy conversion technologies.  相似文献   

7.
The realization of water electrolysis on the basis of highly active, cost-effective electrocatalysts is significant yet challenging for achieving sustainable hydrogen production from water. Herein, N-doped Ni3S2/N-doped MoS2 1D hetero-nanowires supported by Ni foam (N-Ni3S2/N-MoS2/NF) are readily synthesized through a chemical transformation strategy by using NiMoO4 nanowire array growth on Ni foam (NiMoO4/NF) as the starting material. With the in situ generation of Ni3S2/MoS2 heterointerfaces within nanowires and the incorporation of N anions, an extraordinary hydrophilic nature with abundant, well-exposed active sites and optimal reaction dynamics for both oxidation and reduction of water are obtained. Attributed to these properties, as-converted N-Ni3S2/N-MoS2/NF exhibits highly efficient electrocatalytic activities for both hydrogen and oxygen evolution reactions under alkaline conditions. The superior bifunctional properties of N-Ni3S2/N-MoS2/NF enable it to effectively catalyze the overall water-splitting reaction.  相似文献   

8.
The development of transition‐metal‐oxides (TMOs)‐based bifunctional catalysts toward efficient overall water splitting through delicate control of composition and structure is a challenging task. Herein, the rational design and controllable fabrication of unique heterostructured inter‐doped ruthenium–cobalt oxide [(Ru–Co)Ox] hollow nanosheet arrays on carbon cloth is reported. Benefiting from the desirable compositional and structural advantages of more exposed active sites, optimized electronic structure, and interfacial synergy effect, the (Ru–Co)Ox nanoarrays exhibited outstanding performance as a bifunctional catalyst. Particularly, the catalyst showed a remarkable hydrogen evolution reaction (HER) activity with an overpotential of 44.1 mV at 10 mA cm?2 and a small Tafel slope of 23.5 mV dec?1, as well as an excellent oxygen evolution reaction (OER) activity with an overpotential of 171.2 mV at 10 mA cm?2. As a result, a very low cell voltage of 1.488 V was needed at 10 mA cm?2 for alkaline overall water splitting.  相似文献   

9.
The exploitation of efficient and stable water oxidation catalysts is a pressing challenge to solve the energy crisis. Herein, flower‐like CuCo2S4 microspheres were successfully synthesized and used as an effective water oxidation catalyst. CuCo2S4/NF (NF=nickel foam) affords electrocatalytic water oxidation activity, with a current density of 20 mA cm?2 at a low overpotential of 260 mV. The overpotential value is lower than that of benchmark RuO2/NF (overpotential of 340 mV at a current density of 20 mA cm?2). The water oxidation activity increases linearly before nonlinearly improving with increasing pH; this indicates that the substrate changes from water to hydroxyl. The CuCo2S4/NF catalyst is demonstrated to be a real water oxidation catalyst based on diverse experiments.  相似文献   

10.
Polymeric carbon nitride (PCN) photosensitizers are proposed replacements for their inorganic counterparts in solar‐to‐fuel conversion via photoelectrochemical water splitting. However, intense charge recombination, primarily because of surface defects, limits the use of PCN in PEC systems. Now, photoanodes are designed by coating PCN films onto highly conductive yttrium‐doped zinc oxide (Y:ZnO) nanorods (NRs) serving as charge collectors. The generation of charge carriers can therefore be promoted by this type II alignment. The charge collectors would be kept nearby for charge separation and transport to be used in the interfacial redox reactions. The photocurrent density of the polymer electrode is improved to 0.4 mA cm?2 at 1.23 V vs. the reversible hydrogen electrode in a Na2SO4 electrolyte solution under AM 1.5 illumination. The result reveals a more than 50‐fold enhancement over the PCN films achieved by powder; the efficiency can be preserved at 95 % for 160 minutes.  相似文献   

11.
《化学:亚洲杂志》2017,12(18):2426-2433
Exploring non‐precious‐metal‐based oxygen reduction reaction (ORR) electrocatalysts featuring high efficiency, low cost, and environmental friendliness is of great importance for the broad applications of fuel cells and metal–air batteries. In this work, ultrathin NiCo2O4 nanosheets deposited on 1D SnO2 nanotubes (SNT) were successfully fabricated through a productive electrospinning technique followed by a sintering and low‐temperature coprecipitation strategy. This hierarchically engineered architecture has ultrathin NiCo2O4 nanosheets uniformly and fully erected on both walls of tubular SNTs, which results in improved electrochemical activity as an ORR catalyst, in terms of positive onset potential and high current density, as well as superior tolerance to crossover effects and long‐term durability with respect to the commercial Pt/C catalyst. The excellent performance of SNT@NiCo2O4 composites may originate from their rationally designed hierarchical tubular nanostructure with completely exposed active sites and interconnected 1D networks for efficient electron and electrolyte transfer; this makes these composite nanotubes promising candidates to replace platinum‐based catalysts for practical fuel cell and metal–air battery applications.  相似文献   

12.
Designing cost-effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active-center-transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co-catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co-catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm−2 for HER and OER in alkaline medium, respectively.  相似文献   

13.
Single atom catalysts (SAC) for water splitting hold the promise of producing H2 in a highly efficient and economical way. As the performance of SACs depends on the interaction between the adsorbate atom and supporting substrate, developing more efficient SACs with suitable substrates is of significance. In this work, inspired by the successful fabrications of borophene in experiments, we systematically study the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) activities of a series of 3d transition metal-based SACs supported by various borophene monolayers (BMs=α_sheet, α1_sheet, and β1_sheet borophene), TM/BMs, using density functional theory calculations and kinetic simulations. All of the TM/BMs systems exhibit superior HER performance compared to Pt with close to zero thermoneutral Gibbs free energy (ΔGH*) of H adsorption. Furthermore, three Ni-deposited systems, namely, Ni/α_BM, Ni/α1_BM and Ni/β1_BM, were identified to be superior OER catalysts with remarkably reduced overpotentials. Based on these results, Ni/BMs can be expected to serve as stunning bifunctional electrocatalysts for water splitting. This work provides a guideline for developing efficient bifunctional electrocatalysts.  相似文献   

14.
ZnO has long been considered as a model UV‐driven photoanode for photoelectrochemical water splitting, but its performance has been limited by fast charge‐carrier recombination, extremely poor stability in aqueous solution, and slow kinetics of water oxidation. These issues were addressed by applying a strategy of optimization and passivation of hydrothermally grown 1D ZnO nanowire arrays. The length and diameter of bare ZnO nanowires were optimized by varying the growth time and precursor concentration to achieve optimal photoelectrochemical performance. The addition of earth‐abundant cobalt phosphate (Co‐Pi) and nickel borate (Ni‐B) oxygen evolution catalysts onto ZnO nanowires resulted in substantial cathodic shifts in onset potential to as low as about 0.3 V versus the reversible hydrogen electrode (RHE) for Ni‐B/ZnO, for which a maximum photocurrent density of 1.1 mA cm?2 at 0.9 V (vs. RHE) with applied bias photon‐to‐current efficiency of 0.4 % and an unprecedented near‐unity incident photon‐to‐current efficiency at 370 nm. In addition the potential required for saturated photocurrent was dramatically reduced from 1.6 to 0.9 V versus RHE. Furthermore, the stability of these ZnO nanowires was significantly enhanced by using Ni‐B compared to Co‐Pi due to its superior chemical robustness, and it thus has additional functionality as a stable protecting layer on the ZnO surface. These remarkable enhancements in both photocatalytic activity and stability directly address the current severe limitations in the use of ZnO‐based photoelectrodes for water‐splitting applications, and can be applied to other photoanodes for efficient solar‐driven fuel synthesis.  相似文献   

15.
The ampoule method provides a promising pathway towards the controllable synthesis of novel electrocatalysts for water electrolysis due to its straightforward manipulation of reaction conditions, accessible experimental design, and controlled environment. This Concept introduces the development of the ampoule method and anticipates its application in electrocatalyst synthesis for water electrolysis. First, the history, device configuration, and merits of the ampoule method are briefly introduced. Afterwards, typical materials synthesized by the ampoule method are discussed. Then, recent process in applying the ampoule method to synthesize electrocatalysts for water electrolysis is highlighted. Finally, opportunities and potentials of this method in facilitating electrocatalyst synthesis for water electrolysis are discussed.  相似文献   

16.
Developing highly active, stable and robust electrocatalysts based on earth‐abundant elements for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is important for many renewable energy conversion processes. Herein, NixCo3‐xO4 nanoneedle arrays grown on 3D porous nickel foam (NF) was synthesized as a bifunctional electrocatalyst with OER and HER activity for full water splitting. Benefiting from the advantageous structure, the composite exhibits superior OER activity with an overpotential of 320 mV achieving the current density of 10 mA cm?2. An exceptional HER activity is also acquired with an overpotential of 170 mV at the current density of 10 mA cm?2. Furthermore, the catalyst also shows the superior activity and stability for 20 h when used in the overall water splitting cell. Thus, the hierarchical 3D structure composed of the 1D nanoneedle structure in NixCo3‐xO4/NF represents an avenue to design and develop highly active and bifunctional electrocatalysts for promising energy conversion.  相似文献   

17.
In this work, a simple one-step hydrothermal method was employed to prepare the Ce-doped Fe2O3 ordered nanorod arrays (CFT). The Ce doping successfully narrowed the band gap of Fe2O3, which improved the visible light absorption performance. In addition, with the help of Ce doping, the recombination of electron/hole pairs was significantly inhibited. The external voltage will make the performance of the Ce-doped sample better. Therefore, the Ce-doped Fe2O3 has reached superior photoelectrochemical (PEC) performance with a high photocurrent density of 1.47 mA/cm2 at 1.6 V vs. RHE (Reversible Hydrogen Electrode), which is 7.3 times higher than that of pristine Fe2O3 nanorod arrays (FT). The Hydrogen (H2) production from PEC water splitting of Fe2O3 was highly improved by Ce doping to achieve an evolution rate of 21 μmol/cm2/h.  相似文献   

18.
Developing highly efficient, easy-to-make and cost-effective bifunctional electrocatalysts for water splitting with lower cell voltages is crucial to producing massive hydrogen fuel. In response, the coupled hierarchical Ni/Fe-based MOF nanosheet arrays with embedded metal sulfide nanoclusters onto nickel foam skeleton(denoted as Fe-Ni3S2 @NiFe-MOF/NF) are fabricated, in which the Fe-Ni3S2 clusters could effectively restrain the aggregation of the laye...  相似文献   

19.
Hydrogen has enormous commercial potential as a secondary energy source because of its high calorific value, clean combustion byproducts, and multiple production methods. Electrocatalytic water splitting is a viable alternative to the conventional methane steam reforming technique, as it operates under mild conditions, produces high-quality hydrogen, and has a sustainable production process that requires less energy. Electrocatalysts composed of precious metals like Pt, Au, Ru, and Ag are commonly used in the investigation of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Nevertheless, their limited availability and expensive cost restrict practical use. In contrast, electrocatalysts that do not contain precious metals are readily available, cost-effective, environmentally friendly, and possess electrocatalytic performance equal to that of noble metals. However, considerable research effort must be devoted to create cost-effective and high-performing catalysts. This article provides a comprehensive examination of the reaction mechanism involved in electrocatalytic water splitting in both acidic and basic environments. Additionally, recent breakthroughs in catalysts for both the hydrogen evolution and oxygen evolution reactions are also discussed. The structure-activity relationship of the catalyst was deep-going discussed, together with the prospects of current obstacles and potential for electrocatalytic water splitting, aiming at provide valuable perspectives for the advancement of economical and efficient electrocatalysts on an industrial scale.  相似文献   

20.
The development of hydrogen evolution catalysts based on nonprecious metals is essential for the practical application of water‐splitting devices. Herein, the synthesis of Co9S8?MoS2 hierarchical nanoboxes (HNBs) as efficient catalysts for the hydrogen evolution reaction (HER) is reported. The surface of the hollow cubic structure was organized by CoMoS4 nanosheets formed through the reaction of MoS42? and Co2+ released from the cobalt zeolite imidazole framework (ZIF‐67) templates under reflux in a mixture of water/ethanol. The formation process for the CoMoS4 HNB structures was characterized by TEM images recorded at various reaction temperatures. The amorphous CoMoS4 HNBs were converted through sequential heat treatments into CoSx?MoS2 and Co9S8?MoS2 HNBs. Owing to their unique chemical compositions and structural features, Co9S8?MoS2 HNBs have a high specific surface area (124.6 m2 g?1) and superior electrocatalytic performances for the HER. The Co9S8?MoS2 HNBs exhibit a low overpotential (η10) of 106 mV, a low Tafel slope of 51.8 mV dec?1, and long‐term stability in an acidic medium. The electrocatalytic activity of Co9S8?MoS2 HNBs is superior to that of recently reported values, and these HNBs prove to be promising candidates for the HER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号