首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three unprecedented helical nanographenes ( 1 , 2 , and 3 ) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X-ray crystallographic analysis. The embedded azulene unit in 2 possesses a record-high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis-spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps ( 2 : 1.88 eV; 3 : 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in-situ EPR/Vis–NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties.  相似文献   

2.
The oxidative cyclodehydrogenation (often named the Scholl reaction) is still a powerful synthetic tool to construct even larger polycyclic aromatic hydrocarbons (PAHs) by multiple biaryl bond formations without the necessity of prior installation of reacting functional groups. Scholl‐type reactions are usually very selective although the resulting products bear sometimes some surprises, such as the formation of five‐membered instead of six‐membered rings or the unexpected migration of aryl moieties. There are a few examples, where chlorinated byproducts were found when FeCl3 was used as reagent. To our knowledge, the direct functionalization of PAHs during Scholl‐type cyclization by triflyloxylation has not been observed. Herein we describe the synthesis of functionalized PAHs by the formation of five‐membered rings and a regioselective triflyloxylation in one step. The triflyloxylated PAHs can be used as reactants for further transformation to even larger contorted PAHs.  相似文献   

3.
Syntheses of large polycyclic aromatic hydrocarbons (PAHs) and graphene nanostructures demand methods that are capable of selectively and efficiently fusing large numbers of aromatic rings, yet such methods remain scarce. Herein, we report a new approach that is based on the quantitative intramolecular reductive cyclization of an oligo(diyne) with a low‐valent zirconocene reagent, which gives a PAH with one or more annulated zirconacyclopentadienes (ZrPAHs). The efficiency of this process is demonstrated by a high‐yielding fivefold intramolecular coupling to form a helical ZrPAH with 16 fused rings (from a precursor with no fused rings). Several other PAH topologies are also reported. Protodemetalation of the ZrPAHs allowed full characterization (including by X‐ray crystallography) of PAHs containing one or more appended dienes with the ortho‐quinodimethane (o‐QDM) structure, which are usually too reactive for isolation and are potentially valuable for the fusion of additional rings by Diels–Alder reactions.  相似文献   

4.
5.
Rapid access to structurally diversified polycyclic aromatic hydrocarbons (PAHs) in a controlled manner is of key significance in materials sciences. Herein, we describe a strategy featuring two distinct electrocatalytic C?H transformations for the synthesis of novel nonplanar PAHs. The combination of rhodaelectrooxidative C?H activation/[2+2+2] alkyne annulation of easily accessible boronic acids with electrocatalytic cyclodehydrogenation provided modular access to diversely substituted PAHs with electricity as a sustainable oxidant. The unique molecular topology as well as the photophysical and electronic properties of the thus obtained PAHs were fully analyzed. The unique power of this metallaelectrocatalysis method was demonstrated by the chemoselective assembly of synthetically useful iodo‐substituted PAHs.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) represent the link between resonance‐stabilized free radicals and carbonaceous nanoparticles generated in incomplete combustion processes and in circumstellar envelopes of carbon rich asymptotic giant branch (AGB) stars. Although these PAHs resemble building blocks of complex carbonaceous nanostructures, their fundamental formation mechanisms have remained elusive. By exploring these reaction mechanisms of the phenyl radical with biphenyl/naphthalene theoretically and experimentally, we provide compelling evidence on a novel phenyl‐addition/dehydrocyclization (PAC) pathway leading to prototype PAHs: triphenylene and fluoranthene. PAC operates efficiently at high temperatures leading through rapid molecular mass growth processes to complex aromatic structures, which are difficult to synthesize by traditional pathways such as hydrogen‐abstraction/acetylene‐addition. The elucidation of the fundamental reactions leading to PAHs is necessary to facilitate an understanding of the origin and evolution of the molecular universe and of carbon in our galaxy.  相似文献   

7.
8.
BN-embedded oligomers with different pairs of BN units were synthesized by electrophilic borylation. Up to four pairs of BN units were incorporated in the large polycyclic aromatic hydrocarbons (PAHs). Their geometric, photophysical, electrochemical, and Lewis acidic properties were investigated by X-ray crystallography, optical spectroscopy, and cyclic voltammetry. The B−N bonds show delocalized double-bond characteristics and the conjugation can be extended through the trans-orientated aromatic azaborine units. Calculations reveal the relatively lower aromaticity for the inner azaborine rings in the BN-embedded PAH oligomers. The frontier orbitals of the longer oligomers are delocalized over the inner aromatic rings. Consequently, the inner moieties of the BN-embedded PAH oligomers are more active than the outer parts. This is confirmed by a simple oxidation reaction, which has significant effects on the aromaticity and the intramolecular charge-transfer interactions.  相似文献   

9.
We report a modular synthetic strategy for accessing heteroatom‐containing polycyclic aromatic hydrocarbons (PAHs). Our approach relies on the controlled generation of transient heterocyclic alkynes and arynes. The strained intermediates undergo in situ trapping with readily accessible oxadiazinones. Four sequential pericyclic reactions occur, namely two Diels–Alder/retro‐Diels–Alder sequences, which can be performed in a stepwise or one‐pot fashion to assemble four new carbon–carbon (C?C) bonds. These studies underscore how the use of heterocyclic strained intermediates can be harnessed for the preparation of new organic materials.  相似文献   

10.
11.
A versatile π‐extension reaction was developed based on the three‐component cross‐coupling of aryl halides, 2‐haloarylcarboxylic acids, and norbornadiene. The transformation is driven by the direction and subsequent decarboxylation of the carboxyl group, while norbornadiene serves as an ortho ‐C−H activator and ethylene synthon via a retro‐Diels–Alder reaction. Comprehensive DFT calculations were performed to account for the catalytic intermediates.  相似文献   

12.
Halogenated buckybowls or bowl‐shaped polycyclic aromatic hydrocarbons (BS‐PAHs) are key building blocks for the “bottom‐up” synthesis of various carbon‐based nanomaterials with outstanding potential in different fields of technology. The current state of the art provides quite a limited number of synthetic pathways to BS‐PAHs; moreover, none of these approaches show high selectivity and tolerance of functional groups. Herein we demonstrate an effective route to BS‐PAHs that includes directed intramolecular aryl–aryl coupling through C−F bond activation. The coupling conditions were found to be completely tolerant toward aromatic C−Br and C−Cl bonds, thus allowing the facile synthesis of rationally halogenated buckybowls with an unprecedented level of selectivity. This finding opens the way to functionalized BS‐PAH systems that cannot be obtained by alternative methods.  相似文献   

13.
We report on the one‐ and two‐water clusters of [4]helicene, the smallest polycyclic aromatic hydrocarbon with a helical sense, which were captured in the gas phase using high‐resolution rotational spectroscopy. The structures of the complexes are unambiguously revealed using microwave spectra of isotopically enriched species. In the one‐water cluster, the apparent splitting pattern is consistent with a tunneling motion that encompasses an exchange of strongly and weakly bonded water hydrogens. This motion is “locked” in the two‐water cluster. The relevant intermolecular contacts, symmetry, and aromaticity effects are unveiled for the microsolvated chiral topologies. These observations entail the first glance at the structures and internal dynamics of the water binding motifs of a chiral polycyclic aromatic hydrocarbon.  相似文献   

14.
This study presents a new class of conjugated polycyclic molecules that contain seven‐membered rings, detailing their synthesis, crystal structures and semiconductor properties. These molecules have a nearly flat C6‐C7‐C6‐C7‐C6 polycyclic framework with a p‐quinodimethane core. With field‐effect mobilities of up to 0.76 cm2 V−1 s−1 as measured from solution‐processed thin‐film transistors, these molecules are alternatives to the well‐studied pentacene analogues for applications in organic electronic devices.  相似文献   

15.
Superbenzoquinone (SBQ) is a quinone derived from a classic polycyclic aromatic hydrocarbon (PAH), hexa‐peri ‐hexabenzocoronene (so‐called “superbenzene”), and is a challenging synthetic target. Herein we report the successful synthesis and characterization of its derivatives. We reveal that the high reactivity of SBQ is due to its intrinsic open‐shell diradical character. Thus, two kinetically blocked SBQs, SBQ‐Me and SBQ‐Ph , were prepared by different synthetic strategies. 4‐tert ‐Butylphenyl‐substituted SBQ‐Ph demonstrated good stability and could be isolated in crystalline form. Both compounds have an open‐shell singlet ground state and show thermally populated paramagnetic activity. Our studies provide effective strategies toward stable quinone‐based diradicaloids.  相似文献   

16.
We report a molecular design and concept using π-system elongation and steric effects from helicenes surrounding a triphenylene core toward stable chiral polycyclic aromatic hydrocarbons (PAHs) with a maximal π-distortion to tackle their aromaticity, supramolecular and molecular properties. The selective syntheses, and the structural, conformational and chiroptical properties of two diastereomeric large multi-helicenes of formula C90H48 having a triphenylene core and embedding three [5]helicene units on their inner edges and three [7]helicene units at their periphery are reported based on diastereoselective and, when applicable, enantiospecific Yamamoto-type cyclotrimerizations of racemic or enantiopure 9,10-dibromo[7]helicene. Both molecules have an extremely distorted triphenylene core, and one of them exhibits the largest torsion angle recorded so far for a benzene ring (twist=36.9°).  相似文献   

17.
A unified low-temperature reaction mechanism on the formation of acenes, phenacenes, and helicenes—polycyclic aromatic hydrocarbons (PAHs) that are distinct via the linear, zigzag, and ortho-condensed arrangements of fused benzene rings—is revealed. This mechanism is mediated through a barrierless, vinylacetylene mediated gas-phase chemistry utilizing tetracene, [4]phenacene, and [4]helicene as benchmarks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures. This mechanism opens up an isomer-selective route to aromatic structures involving submerged reaction barriers, resonantly stabilized free-radical intermediates, and systematic ring annulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space. Connecting helicene templates to the Origins of Life ultimately changes our hypothesis on interstellar carbon chemistry.  相似文献   

18.
19.
In this work, a facile and versatile strategy for the synthesis of contorted polycyclic aromatic hydrocarbons (PAHs) starting from the functionalized pentacene was established. A series of novel PAHs 1 – 4 and their derivatives were synthesized through a simple two-step synthesis procedure involving an intramolecular reductive Friedel–Crafts cyclization of four newly synthesized pentacene aldehydes 5 – 8 as a key step. All the molecules were confirmed by single-crystal X-ray diffraction and their photophysical and electrochemical properties were studied in detail. Interestingly, the most striking feature of 1 – 4 is their highly contorted carbon structures and the accompanying helical chirality. In particular, the optical resolution of 2 was successfully achieved by chiral-phase HPLC, and the enantiomers were characterized by circular dichroism and circularly polarized luminescence spectroscopy. Despite the highly nonplanar conformations, these contorted PAHs exhibited emissive properties with moderate-to-good fluorescence quantum yields, implying the potential utility of this series PAHs as high-quality organic laser dyes. By using a self-assembly method with the help of epoxy resin, a bottle microlaser based on 3 a was successfully illustrated with a lasing wavelength of 567.8 nm at a threshold of 0.3 mJ/cm2. We believe that this work will shed light on the chemical versatility of pentacene and its derivatives in the construction of novel functionalized PAHs.  相似文献   

20.
Efficient and rapid access to nanographenes and π‐extended fused heteroaromatics is important in materials science. Herein, we report a palladium‐catalyzed efficient one‐step annulative π‐extension (APEX) reaction of polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics, producing various π‐extended aromatics. In the presence of a cationic Pd complex, triflic acid, silver pivalate, and diiodobiaryls, diverse unfunctionalized PAHs and heteroaromatics were directly transformed into larger PAHs, nanographenes, and π‐extended fused heteroaromatics in a single step. In the reactions that afford [5]helicene substructures, simultaneous dehydrogenative ring closures occur at the fjord regions to form unprecedented larger nanographenes. This successive APEX reaction is notable as it stiches five aryl–aryl bonds by C−H functionalization in a single operation. Moreover, the unique molecular structures, crystal‐packing structures, photophysical properties, and frontier molecular orbitals of the thus‐formed nanographenes were elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号