首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Malaria threatens 300–500 million people and kills more than one million people annually. Artemisinin has been widely used as part of the artemisinin‐based combination therapies against malaria. However, its supply is seriously short due to very small amounts of production of artemisinin in Artemisia annua. Molecular biologic researches aimed at increasing the artemisinin yield in plant have received more and more attention and therefore corresponding quantification methods for artemisinin analysis are urgently needed. A variety of methods for determination of artemisinin have been developed but they cannot be applied when only very little plant material is available or the material should be kept live, which often occurs in molecular biologic researches. The present work developed a simple, fast and low toxic micro‐scale analysis procedure for determination of artemisinin in a single leaf or flower of living Artemisia annua using improved gas chromatography with electron‐capture detection. The recovery of >95% was achieved by vortex of a piece of fresh leaf in 1 mL ethyl acetate for 2 min at room temperature. This method provides a powerful tool for biosynthesis study of artemisnin, high‐throughput screening high‐yield clone in an early stage, or real‐time quality control of Artemisia annua crop. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Artemisinin is an endoperoxide sesquiterpene lactone isolated from the Chinese medicinal plant Artemisia annua L. It has been widely used in South-East Asia and Africa as an effective drug against sensitive and multidrug-resistant Plasmodium falciparum malaria. A monoclonal antibody (mAb), designated as 3H2, was generated with artesunate–bovine serum albumin conjugate as the immunogen. mAb 3H2 was used to develop a highly sensitive and specific indirect competitive enzyme-linked immunosorbent assay (icELISA) for artemisinin. The concentration of analyte producing 50% of inhibition (IC50) and the working range of the icELISA were 1.3 and 0.2–5.8 ng/mL, respectively. The mAb 3H2 recognized the artemisinin analogs artesunate, dihydroartemisinin, and artemether with cross-reactivity of 650%, 57%, and 3%, respectively, but negligibly recognized deoxyartemisinin and the artemisinin precursors arteannuin B and artemisinic acid. The average recoveries of artemisinin fortified in A. annua samples at concentrations from 156 to 5,000 μg/g determined by icELISA ranged from 91% to 98%. The icELISA was applied for the determination of artemisinin in different wild A. annua samples and the results were confirmed by high-performance liquid chromatography (HPLC) analysis. The correlation coefficient (R 2) between the two assays was larger than 0.99, demonstrating a good agreement between the icELISA and HPLC results. This ELISA is suitable for quality assurance of A. annua L. materials. Figure  Artemisia annua plant and antimalarial drugs derived from artemisinin  相似文献   

3.
Artemisia annua is a promising and potent antimalarial herbal drug. This activity has been ascribed to its component artemisinin, a sesquiterpene lactone. The ability to determine artemisinin and its known analogs in plant extracts is an especially difficult task because the compounds are present in low concentrations, are thermolabile, and lack ultraviolet or fluorescent chromophores. We report herein a facile and rapid 1-D 1H, 1-D total correlation spectroscopy, 2-D 1H–13C heteronuclear single quantum coherence, and 1H–13C heteronuclear multiple bond correlation nuclear magnetic resonance techniques for the simultaneous identification and quantification of artemisinin and five of its analogs along with five flavonoids, an aromatic ketone, and camphor (in total, 13 compounds) in crude diethyl ether A. annua extract without the need of laborious isolation of the individual analytes. The above method was validated in terms of precision, linearity, and limit of detection. The analytical results were found to be in excellent agreement with those obtained with the use of the time consuming high-performance liquid chromatography with diode-array detection and liquid chromatography with tandem mass spectrometry for the compounds that standards were available.  相似文献   

4.
A hemin bulk modified carbon electrode with Adeps neutralis (solid fat) as binder was developed for the determination of antimalarial endoperoxide artemisinin in plant matrix. The hemin modified electrode showed significant catalytic activity for the electrochemical reduction of artemisinin at about ?380 mV vs. Ag/AgCl in phosphate buffer solution of pH 7 by using cyclic and differential pulse voltammetry. Under optimized conditions strict linearity between artemisinin concentration and height of the cathodic catalytic current peak was observed in 4.8×10?6–7.8×10?5 M concentration range (R=0.9991) when using differential pulse voltammetry. The detection limit was calculated as 1.4×10?6 M of artemisinin. The developed electroanalytical device is suitable for the determination of artemisinin in Artemisia annua extracts.  相似文献   

5.
In previous studies, it was revealed that ethyl acetate (EtOAc) extracts from Sophora flavescens Ait. improved glucose tolerance, reduced hyperglycemia, and restored insulin levels in diabetic patients. The aim of this study was to develop an accurate and sensitive UHPLC–MS method for simultaneous determination of flavonoids in EtOAc extracts of Kushen in rat plasma. Ethyl acetate–acetonitrile (2:1) was selected as the solvent to extract the four flavonoids from rat plasma. A BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with a C18 guard cartridge was chosen as the separation plant using a gradient elution with acetonitrile (solvent A) and 0.1% formic acid (solvent B) in water. For all four analytes, the method showed good linearity (r2 > 0.991) in 1–500 ng/mL. The inter‐ and intra‐day accuracy ranged from ?13.78 to 7.19%, and the precision (RSD) was <8.75%. Recoveries of all four flavonoids ranged from 85.9 to 101.3%. According to the results of multitarget pharmacokinetic studies, four active flavonoids in EtOAc extracts from Kushen have similar absorption kinetics but very different metabolic kinetics, and a double peak phenomenon was observed in the concentration–time curve of norkurarinone, which is different from the previous study. In conclusion, detection and multitarget pharmacokinetic studies successfully determined active flavonoids after oral administration of EtOAc extracts from Kushen by an efficient, sensitive and selective UHPLC–MS method, and the results may provide a foundation for future studies of Kushen.  相似文献   

6.
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N ‐oxidated metabolite (PQ‐M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple‐quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0–400.0 ng/mL for PQ and 1.0–50.0 ng/mL for PQ‐M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ‐M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co‐administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ‐M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).  相似文献   

7.
A polymeric adsorbent for extraction of the antimalarial drug artemisinin from Artemisia annua L. was computationally designed. This polymer demonstrated a high capacity for artemisinin (120 mg g?1), quantitative recovery (87%) and was found to be an effective material for purification of artemisinin from complex plant matrix. The artemisinin quantification was conducted using an optimised HPLC‐MS protocol, which was characterised by high precision and linearity in the concentration range between 0.05 and 2 μg mL?1. Optimisation of the purification protocol also involved screening of commercial adsorbents for the removal of waxes and other interfering natural compounds, which inhibit the crystallisation of artemisinin. As a result of a two step‐purification protocol crystals of artemisinin were obtained, and artemisinin purity was evaluated as 75%. By performing the second stage of purification twice, the purity of artemisinin can be further improved to 99%. The developed protocol produced high‐purity artemisinin using only a few purification steps that makes it suitable for large scale industrial manufacturing process.  相似文献   

8.
Yupingfeng granules (YPFG) were isolated from a traditional Chinese medicine (TCM) formulation composed of three herbs (Astragali Radix, Atractylodis Macrocephalae Rhizoma, and Saposhnikoviae Radix). This formulation is used in TCM to tonify qi, and it can help strengthen exterior and reduce sweating. Nevertheless, the active components of YPFG remain unclear. In this study, the chemical constituents of YPFG were systematically characterized by ultra‐performance liquid chromatography coupled with electrospray ionization/ quadrupole time‐of‐flight mass spectrometry (UPLC‐ESI‐Q‐TOF‐MS). Fifty‐eight compounds, namely, 20 flavonoids, 19 saponins, nine organic acids, four volatile coumarins, three lactones, one alkaloid, and two other components, were identified. In addition, the constituents of YPFG with the potential for in vivo bioactivities following oral administration were investigated in Sprague–Dawley rats. Thirteen compounds, namely, 11 flavonoid‐related and 2 saponin‐related components, were detected in rat plasma. After enriching flavonoids and saponins in YPFG by extraction, the extracts and YPFG were administrated to immunosuppressed rats, respectively. Plasma samples were analyzed by UPLC‐ESI‐Q‐TOF‐MS, and principal component analysis (PCA) confirmed that the extracts had similar effects to YPFG. This method could discover active ingredients in YPFG quickly and provide a scientific basis for quality control and mechanism research.  相似文献   

9.
Formononetin‐7‐O‐β‐d ‐glucoside has been proved to have significant anti‐inflammatory effect. To evaluate its rat pharmacokinetics, a rapid, sensitive, and specific liquid chromatography–tandem mass spectrometry method has been developed and validated for the quantification of formononetin‐7‐O‐β‐d ‐glucoside and its main metabolite formononetin in rat plasma. Samples were pretreated using a simple protein precipitation and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water and acetonitrile both containing 0.1% formic acid. Both analytes were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. The assay showed wide linear dynamic ranges of both 0.10–100 ng/mL, with acceptable intra‐ and inter‐batch accuracy and precision. The lower limits of quantification were both 0.10 ng/mL using 50 μL of rat plasma for two analytes. The method has been successfully used to investigate the oral pharmacokinetic profiles of both analytes in rats. After oral administration of formononetin‐7‐O‐β‐d ‐glucoside at the dose of 50 mg/kg, it was rapidly absorbed in vivo and metabolized to its metabolite formononetin. The plasma concentration‐time profiles both showed double‐peak phenomena, which would be attributed to the strong enterohepatic circulation of formononetin‐7‐O‐β‐d ‐glucoside.  相似文献   

10.
A selective and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous quantitative determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and 1‐O‐ acetylbritannilactone (1‐O‐ ABL) in rat plasma. Chromatographic separation was performed on a Zorbax Eclipse XDB‐C18 column using isocratic mobile phase consisting of methanol–water–formic acid (70:30:0.1, v /v/v) at a flow rate of 0.25 mL/min. The detection was achieved using a triple‐quadrupole tandem MS in selected reaction monitoring mode. The calibration curves of all analytes in plasma showed good linearity over the concentration ranges of 0.850–213 ng/mL for 1,5‐DCQA, and 0.520–130 ng/mL for 1‐O‐ ABL, respectively. The extraction recoveries were ≥78.5%, and the matrix effect ranged from 91.4 to 102.7% in all the plasma samples. The method was successfully applied for the pharmacokinetic study of the two active components in the collected plasma following oral administration of Inula britannica extract in rats.  相似文献   

11.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Iron present in hemolyzed plasma could cause the degradation of artemisinin by reductively cleaving the peroxide bridge of artemisinin during sample preparation, which is a significant technical challenge for artemisinin determination. In this paper, this issue was resolved by using sodium nitrite as methemoglobin-forming agent to oxidize hemoglobin to methemoglobin in the presence of acetic acid and prevent the degradation of artemisinin in hemolyzed plasma during the sample preparation procedure. Then, a high-performance liquid chromatography tandem high-resolution mass spectrometry method was developed and validated for the determination of artemisinin in normal and hemolyzed plasma. The linear range was validated over the concentration range of 5–500 ng ml−1. The matrix effect and stability were also evaluated. This robust and sensitive assay was successfully applied to a pharmacokinetic study in rats after an oral administration of Artemisia annua L. extract.  相似文献   

13.
Artemisia annua L. (A. annua) has been used as herbal medicine in China for thousands of years for clearing deficiency heat, treating malaria and removing jaundice. A rapid, sensitive and specific liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) method was developed, validated, and successfully used for simultaneous quantification of the active components in rat plasma after oral administration of A. annua extract. Molecular docking of each component with drug metabolizing enzymes was carried out to explore the effect of each component on CYP-mediated drug metabolism. Two coumarins (scopolin (SPL) and scopoletin (SPLT)), three flavonoids (rutin (RUT), chrysosplenol D (CHD), casticin (CAS)) and three sesquiterpenes (arteannuin B (ARN), dihydroartemisinic acid (DARM) and artemisinic acid (ARM)) were detected in rat plasma after oral administration. CHD and CAS were rapidly absorbed into rat blood with the Tmax values of 0.11 ± 0.04 h and 0.13 ± 0.05 h, respectively. Their half-lives (t1/2 2.68 ± 3.62 h and 0.33 ± 0.07 h) were shorter. SPLT were also rapidly absorbed into the blood (Tmax 0.15 ± 0.03 h), but exhibited a longer half-life (t1/2 6.53 ± 1.84 h), indicating that it could be effective in vivo for a longer period of time. The peak time of SPL, RUT, DARM and ARM ranged from 1 ~ 4 h, demonstrating that they could maintain considerable concentrations for a longer time. ARN showed strong enterohepatic circulation in rats, leading to slower onset time and longer effect. A few components including SPLT, CHD, CAS and ARN could be metabolized into their corresponding II phase metabolites combining with glucuronic acid or sulfuric acid. RUT could decompose its glycosyl to generate genin. The molecular docking results indicated that those flavonoids and coumarins of A. annua interacting with CYPs mainly through hydrogen bonding and π-π stacking had better CYP450 enzyme binding ability than the sesquiterpenoids, which were easier to induce drug interactions. This study presented an integrated strategy for investigating the pharmacokinetic behaviors of eight components in A. annua and laid the foundation for revealing the mechanism of action of A. annua in the organism.  相似文献   

14.
《Comptes Rendus Chimie》2014,17(3):232-241
A principle of biorefining is extended to medicinal plants with the view of developing a more sustainable business model for biomass producers and extractors. This is demonstrated for Artemisia annua L. currently cultivated or harvested in the wild for extraction of a single compound, artemisinin, comprising on average 1 wt% dry weight of the plant biomass. We scaled extraction of artemisinin by a non-toxic to bacterial fermentation solvent tetrafluoroethane to a 5 L pilot scale. We identified a number of co-metabolites that could be extracted from the plant along with artemisinin and describe the multi-step extraction-fractionation sequence that potentially could be transferred to a large-scale multi-step extraction process. We also show possible routes to higher-value compounds on the basis of A. annua secondary metabolites, exemplified by the conversion of flavonoids to monomers.  相似文献   

15.
β‐Asarone (BAS), a phenylpropanoid from Acorus calamus Linn., has shown biological effects in the management of cognitive impairment conditions such as Alzheimer's disease. The present paper describes a selective and sensitive liquid chromatography–tandem mass spectrometric method (HPLC‐MS/MS) using electrospray ionization source (ESI) for quantification of BAS in rat plasma. Briefly, the plasma samples were pre‐treated using a simple solid‐phase extraction method. The separation of BAS and the internal standard, caffeine, was achieved on an Agilent Zorbax XDB C18 column (50 × 2.1 mm i.d., 5 µm) using 0.2 mL/min isocratic mobile phase flow. The detection was performed using an Applied Biosystems Hybrid Q‐Trap API 2000 mass spectrometer equipped with an ESI source operated in positive mode. Also, the developed bioanalytical method was validated as per the US FDA bioanalytical guidelines over the concentration range of 9.79–4892.50 ng/mL (r2 ≥ 0.9951) for BAS from rat plasma. The mean percentage recovery (n = 3) for the low, middle and high quality control samples was 86.92 ± 3.89, 85.30 ± 1.09 and 87.24 ± 4.03%, respectively. The applicability of the validated HPLC‐MS/MS method was demonstrated by successful measurement of BAS from plasma following oral administration of Acorus calamus rhizome extracts to three female albino Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We aimed to determine the pharmacokinetics and safety of three single oral doses (5, 10 and 15 mg) of ivabradine hemisulfate sustained‐release tablets in healthy Chinese volunteers. A total of 12 volunteers (six males and six females) were randomized to receive a single oral dose of ivabradine hemisulfate sustained‐release tablets 5, 10 or 15 mg, with a 1‐week washout between periods. Blood samples were collected at regular intervals from 0 to 48 h after drug administration, and the concentrations of ivabradine and N‐desmethyl ivabradine were determined by HPLC–tandem mass spectrometry. Pharmacokinetic parameters were estimated by non‐compartmental analysis. After administering single doses of 5, 10 and 15 mg, the mean maximum concentration (Cmax) levels of ivabradine were 4.36, 7.29 and 12.62 ng/mL, and the mean area under the curve from time 0 to 48 h (AUC0–48) values were 55.66, 101.16 and 182.09 h·ng/mL, respectively. The mean Cmax levels of N‐desmethyl ivabradine were 1.05, 2.03 and 3.16 ng/mL, and the mean AUC0–48 values were 20.61, 39.44 and 65.72 h·ng/mL, respectively. The median time of maximum concentration (Tmax) levels of ivabradine and N‐desmethyl ivabradine were 5 h for all three doses tested. The pharmacokinetic properties of ivabradine hemisulfate sustained‐release tablets were linear at doses from 5 to 15 mg. Ivabradine hemisulfate sustained‐release tablet appears to be well tolerated in these healthy volunteers.  相似文献   

17.
The circular dichroism (CD) spectra of the powerful antimalarian active principle artemisinin (ART; 1 ) from Artemisia annua, and of epiartemisinin (EPI, 2), its C(7) epimer, were studied in solution in the presence and absence of β‐cyclodextrin (β‐cd). A significant inversion of sign in the region of the second electronic transition was detected. The rotational strengths were successfully calculated within the time‐dependent density functional theory (DFT), which enabled us to establish a correlation between the molecular recognition and the biological acitivities of the two isomers.  相似文献   

18.
A sensitive, selective and high‐throughput UPLC‐MS/MS method was developed and validated for the determination of a novel c‐Met tyrosine kinase inhibitor, QBH‐196, in rat plasma. QBH‐196 and its analog BH357 (IS) were extracted from rat plasma using a mixture of dichloromethane and N‐hexane (2:3, v/v). The chromatographic separation was carried out on Phenomenex C18 column (50 × 2.1 mm, 2.6 µm particle size) with a gradient mobile phase of methanol (A) and water containing 0.05% formic acid (B) at a flow rate of 0.2 mL/min. The assay was performed by positive electrospray ionization in multiple reaction monitoring mode using transitions of m/z 622.68 → 140.41 for QBH‐196 and m/z 591.19 →126.21 for the IS, respectively. Good linearity was obtained over the concentration range of 8.0–4000 ng/mL (r2 > 0.99) for QBH‐196 and the lower limit of quantification was 8.0 ng/mL in rat plasma. Validations of the method, including its sensitivity, extraction recovery, matrix effect, intra‐ and inter‐day precision, accuracy and stability, were all within acceptable limits. The established method was successfully applied to determine absolute oral bioavailability of QBH‐196 in rats for the first time. The mean oral absolute bioavailability of QBH‐196 was found to be about 40.8% and the elimination half‐life was 40.0 ± 13.1 h. This result suggested that QBH‐196 exhibits good oral absorption in vivo, which is very important for the further development of QBH‐196 as a new oral anticancer drug. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Radix Scutellariae (RS) is a herbal medicine with various pharmacological activities to treat inflammation, respiratory and gastrointestinal infections, etc. In this study, a rapid, sensitive and selective UPLC‐ESI‐MS/MS method was developed for simultaneous determination of 10 flavonoids – scutellarin, scutellarein, chrysin, wogonin, baicalein, apigenin, wogonoside, oroxylin A‐7‐O‐glucuronide, oroxylin A and baicalin – from RS aqueous extracts in rat plasma with propyl paraben as internal standard (IS). Chromatographic separation was achieved on a C18 column using gradient elution with the mobile phase consisting of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min. The detection was performed in multiple reaction monitoring mode using electrospray ionization in negative mode. The validated method showed good linearity over a wide concentration range (r >0.9935). The intra‐ and interday assay variabilities were <9.5% and <12.4% for all analytes, respectively. The extraction recovery ranged from 71.2 to 89.7% for each analyte and IS. This method was successfully applied to pharmacokinetic comparision after oral administration of crude and wine‐processed RS aqueous extracts. There were significant differences in some pharmacokinetic parameters of most analytes between crude and wine‐processed RS. This suggested that wine‐processing exerted effects absorption of most flavonoids. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号