首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The enzymatic conversion of carbonyl sulfide (COS) to hydrogen sulfide (H2S) by carbonic anhydrase has been used to develop self-immolating thiocarbamates as COS-based H2S donors to further elucidate the impact of reactive sulfur species in biology. The high modularity of this approach has provided a library of COS-based H2S donors that can be activated by specific stimuli. A common limitation, however, is that many such donors result in the formation of an electrophilic quinone methide byproduct during donor activation. As a mild alternative, we demonstrate here that dithiasuccinoyl groups can function as COS/H2S donor motifs, and that these groups release two equivalents of COS/H2S and uncage an amine payload under physiologically relevant conditions. Additionally, we demonstrate that COS/H2S release from this donor motif can be altered by electronic modulation and alkyl substitution. These insights are further supported by DFT investigations, which reveal that aryl and alkyl thiocarbamates release COS with significantly different activation energies.  相似文献   

2.
Hydrogen sulfide (H2S) is a biologically active molecule that exhibits protective effects in a variety of physiological and pathological processes. Although several H2S‐related biological effects have been discovered by using H2S donors, knowing how much H2S has been released from donors under different conditions remains challenging. Now, a series of γ‐ketothiocarbamate (γ‐KetoTCM) compounds that provide the first examples of colorimetric H2S donors and enable direct quantification of H2S release, were reported. These compounds are activated through a pH‐dependent deprotonation/β‐elimination sequence to release carbonyl sulfide (COS), which is quickly converted into H2S by carbonic anhydrase. The p‐nitroaniline released upon donor activation provides an optical readout that correlates directly to COS/H2S release, thus enabling colorimetric measurement of H2S donation.  相似文献   

3.
Hydrogen sulfide (H2S) exhibits promising protective effects in many (patho)physiological processes, as evidenced by recent reports using synthetic H2S donors in different biological models. Herein, we report the design and evaluation of compounds denoted PeroxyTCM, which are the first class of reactive oxygen species (ROS)‐triggered H2S donors. These donors are engineered to release carbonyl sulfide (COS) upon activation, which is quickly hydrolyzed to H2S by the ubiquitous enzyme carbonic anhydrase (CA). The donors are stable in aqueous solution and do not release H2S until triggered by ROS, such as hydrogen peroxide (H2O2), superoxide (O2?), and peroxynitrite (ONOO?). We demonstrate ROS‐triggered H2S donation in live cells and also demonstrate that PeroxyTCM‐1 provides protection against H2O2‐induced oxidative damage, suggesting potential future applications of PeroxyTCM and similar scaffolds in H2S‐related therapies.  相似文献   

4.
Prodrugs that release hydrogen sulfide upon esterase‐mediated cleavage of an ester group followed by lactonization are described herein. By modifying the ester group and thus its susceptibility to esterase, and structural features critical to the lactonization rate, H2S release rates can be tuned. Such prodrugs directly release hydrogen sulfide without the involvement of perthiol species, which are commonly encountered with existing H2S donors. Additionally, such prodrugs can easily be conjugated to another non‐steroidal anti‐inflammatory agent, leading to easy synthesis of hybrid prodrugs. As a biological validation of the H2S prodrugs, the anti‐inflammatory effects of one such prodrug were examined by studying its ability to inhibit LPS‐induced TNF‐α production in RAW 264.7 cells. This type of H2S prodrugs shows great potential as both research tools and therapeutic agents.  相似文献   

5.
Persulfides (RSSH) have been hypothesized as critical components in sulfur‐mediated redox cycles and as potential signaling compounds, similar to hydrogen sulfide (H2S). Hindering the study of persulfides is a lack of persulfide‐donor compounds with selective triggers that release discrete persulfide species. Reported here is the synthesis and characterization of a ROS‐responsive (ROS=reactive oxygen species), self‐immolative persulfide donor. The donor, termed BDP‐NAC, showed selectivity towards H2O2 over other potential oxidative or nucleophilic triggers, resulting in the sustained release of the persulfide of N‐acetyl cysteine (NAC) over the course of 2 h, as measured by LCMS. Exposure of H9C2 cardiomyocytes to H2O2 revealed that BDP‐NAC mitigated the effects of a highly oxidative environment in a dose‐dependent manner over relevant controls and to a greater degree than common H2S donors sodium sulfide (Na2S) and GYY4137. BDP‐NAC also rescued cells more effectively than a non‐persulfide‐releasing control compound in concert with common H2S donors and thiols.  相似文献   

6.
The development of dual gasotransmitter donors can not only provide robust tools to investigate their subtle interplay under pathophysiological conditions but also optimize therapeutic efficacy. While conventional strategies are heavily dependent on multicomponent donors, we herein report an ultrasound-responsive water-soluble copolymer ( PSHF ) capable of releasing carbon monoxide (CO) and hydrogen sulfide (H2S) based on single-component sulfur-substituted 3-hydroxyflavone (SHF) derivatives. Interestingly, sulfur substitution can not only greatly improve the ultrasound sensitivity but also enable the co-release of CO/H2S under mild ultrasound irradiation. The co-release of CO/H2S gasotransmitters exerts a bactericidal effect against Staphylococcus aureus and demonstrates anti-inflammatory activity in lipopolysaccharide-challenged macrophages. Moreover, the excellent tissue penetration of ultrasound irradiation enables the local release of CO/H2S in the joints of septic arthritis rats, exhibiting superior therapeutic efficacy without the need for any antibiotics.  相似文献   

7.
Oxidative stress (OS) damage can cause significant injury to cells, which is related to the occurrence and development of many diseases. This pathological process is considered to be the first step to trigger the death of outer retinal neurons, which is related to the pathology of retinal degenerative diseases. Hydrogen sulfide (H2S) has recently received widespread attention as a physiological signal molecule and gas neuromodulator and plays an important role in regulating OS in eyes. In this article, we reviewed the OS responses and regulatory mechanisms of H2S and its donors as endogenous and exogenous regulators in retinal degenerative diseases. Understanding the relevant mechanisms will help to identify the therapeutic potential of H2S in retinal degenerative diseases.  相似文献   

8.
Hydrogen sulfide (H2S) has emerged as a crucial biomolecule in physiology and cellular signaling. Key challenges associated with developing new chemical tools for understanding the biological roles of H2S include developing platforms that enable reversible binding of this important biomolecule. The first synthetic small molecule receptor for the hydrosulfide anion, HS?, using only reversible, hydrogen‐bonding interactions in a series of bis(ethynylaniline) derivatives, is reported. Binding constants of up to 90 300±8700 m ?1 were obtained in MeCN. The fundamental science of reversible sulfide binding, in this case featuring a key CH???S hydrogen bond, will expand the possibility for discovery of sulfide protein targets and molecular recognition agents.  相似文献   

9.
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with potential therapeutic value for treating a range of disorders, such as ischemia-reperfusion injury resulting from a myocardial infarction or stroke. However, the medicinal delivery of H2S is hindered by its corrosive and toxic nature. In addition, small molecule H2S donors often generate other reactive and sulfur-containing species upon H2S release, leading to unwanted side effects. Here, we demonstrate that H2S release from biocompatible porous solids, namely metal–organic frameworks (MOFs), is a promising alternative strategy for H2S delivery under physiologically relevant conditions. In particular, through gas adsorption measurements and density functional theory calculations we establish that H2S binds strongly and reversibly within the tetrahedral pockets of the fumaric acid-derived framework MOF-801 and the mesaconic acid-derived framework Zr-mes, as well as the new itaconic acid-derived framework CORN-MOF-2. These features make all three frameworks among the best materials identified to date for the capture, storage, and delivery of H2S. In addition, these frameworks are non-toxic to HeLa cells and capable of releasing H2S under aqueous conditions, as confirmed by fluorescence assays. Last, a cellular ischemia-reperfusion injury model using H9c2 rat cardiomyoblast cells corroborates that H2S-loaded MOF-801 is capable of mitigating hypoxia-reoxygenation injury, likely due to the release of H2S. Overall, our findings suggest that H2S-loaded MOFs represent a new family of easily-handled solid sources of H2S that merit further investigation as therapeutic agents. In addition, our findings add Zr-mes and CORN-MOF-2 to the growing lexicon of biocompatible MOFs suitable for drug delivery.

Metal–organic frameworks enable the delivery of hydrogen sulfide (H2S), an endogenous gasotransmitter with potential therapeutic value for treating disorders such as ischemia-reperfusion injury.  相似文献   

10.
Hydrogen sulfide (H2S), an endogenous modulator of signaling processes, has potential as a therapeutic drug or in combination drug therapies. Due to its broad biological impacts and malodorous nature, there is considerable interest in vehicles capable of delivering H2S in a controlled manner. Herein, we report postpolymerization modification of polymers incorporating glycidyl methacrylate (GMA) units to form thiol‐triggered macromolecular H2S donors. By combining this approach with polymerization‐induced self‐assembly, this methodology allows the facile preparation of polymeric nanoparticulate donors with either spherical or worm‐like morphology. The thiol‐reactive epoxide functional groups in poly(GMA) were chemically transformed into acyl‐protected perthiol groups using a three‐step procedure throughout which both morphologies remained intact. The H2S releasing properties were subsequently studied, with both spherical and worm‐like nanoparticulate donors shown to successfully release H2S in the presence of the model thiol, l ‐cysteine. In addition, the donor polymers were shown to effectively increase H2S inside cells, upon exposure to biologically relevant endogenous thiol levels. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1982–1993  相似文献   

11.
《Analytical letters》2012,45(14):2697-2709
Abstract

A novel piezoelectric quartz crystal microbalance (QCM) device with gas permeable membrane is proposed for the detection of microorganisms producing hydrogen sulfide (H2S). The detection theory is based on the adsorption of hydrogen sulfide onto the silver electrode of the piezoelectric crystal sensor, which causes a dramatic decrease in the resonant frequency of QCM. A 100 Hz frequency shift is chosen as the criteria value to judge the presence of microorganisms producing H2S. Factors affecting detection were investigated. Desiccant is of great practical importance in sensor response. This new biosensor can be a potential candidate for detecting bacteria which produce hydrogen sulfide.  相似文献   

12.
The reaction of laser-ablated vanadium, niobium and tantalum atoms with hydrogen sulfide has been investigated using matrix isolation FTIR and theoretical calculations. The metal atoms inserted into the H-S bond of H2S to form the HMSH molecules (M=V, Nb, Ta), which rearranged to H2MS molecules on annealing for Nb and Ta. The HMSH molecule can also further react with another H2S to form the H2M(SH)2 molecules. These new molecules were identified on the basis of the D2S and H234S isotopic substitutions. DFT (B3LYP and BPW91) theoretical calculations are used to predict energies, geometries, and vibrational frequencies for these novel metal dihydrido complexes and molecules. Reaction mechanism for formation of group V dihydrido complex was investigated by DFT internal reaction coordinate calculations. The dissociation of HVSH gave VS+H2 on broad band irradiation and reverse reaction happened on annealing. Based on B3LYP calculation releasing hydrogen from HVSH is endothermic only by 13.5 kcal/mol with lower energy barrier of 16.9 kcal/mol.  相似文献   

13.
A novel dicoumarin-derived hydrogen sulfide (H2S) selective fluorescent “turn-on” probe 3-(2,4-dinitrobenzenesulfonate)-dicoumarin (DC-HS) created by covalent bonding between the 2,4-dinitrobenzenesulfonyl (DNBS) and the 3-hydroxy-dicoumarin (DC-OH) units. Upon the addition of H2S, the probe DC-HS solution's fluorescence significantly increased, and its appearance is changed from practically colorless to brilliant yellow. Probe DC-HS also showed significant fluorescence amplification that was quantitatively detectable in the concentration range of 0–1.5 μM and had a low detection limit or limit of detection of 0.2 nM. Moreover, with a high recovery rate and excellent accuracy, the developed fluorescent molecule was used successfully for the analysis of H2S in red wine samples.  相似文献   

14.
The effectiveness of applying a pulsed corona discharge to the destruction of olfactory pollution in air was investigated. This paper presents a comparative study of the decomposition of three representative sulfide compounds in diluted concentrations: hydrogen sulfide (H2S), dimethyl sulfide (DMS), and ethanethiol (C2H5SH), which could be completely removed when a sufficient but reasonable energy density was deposited in the gas. DMS showed the lowest energy cost (around 30 eV/molecules); C2H5SH and H2S had an EC of respectively 45 eV and 115 eV. The efficiency of the non-thermal plasma process increased with decreasing the initial concentration of sulfide compounds, while the energy yield remained almost unchanged. SO2 was the only identified byproduct of H2S decomposition, but the sulfur balance suggests the formation of undetected SO3. The byproducts analyzed during the degradation of DMS and C2H5SH enabled to propose a reaction mechanism, starting with radical attack and breaking of C–S bonds.  相似文献   

15.
The kinetics of the oxidation of diethyl sulfide (Et2S) with hydrogen peroxide, catalyzed by hydrogen carbonate and silicate anions, agree with the assumption that peroxymonocarbonate (HCO 4) and peroxymonosilicate (HSiO 4) anions are formed as intermediates. The rate of reaction of Et2S with HCO 4 is about 100 times as fast as with H2O2. Transfer to aqueous–alcoholic solutions leads to an increase in the solubility of Et2S while retaining the catalytic effects.  相似文献   

16.
Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment withThiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixedThiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptancontaining, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components.  相似文献   

17.
Gallium sulfide (GaxS) and copper gallium sulfide (CuxGaySz) were synthetized by atomic layer deposition (ALD), using copper acetylacetonate Cu(acac)2, hexakis(dimethylamino)digallium [Ga(NMe2)3]2 and hydrogen sulfide (H2S). Thanks to the compatibility of the CuxS and GaxS ALD windows, a supercycle strategy that combines single growth cycles of the two binary compounds was used to generate the ternary material. A wide range of compositions and properties can be obtained from Ga-rich to Cu-rich via copper gallium sulfide thin films. Structural, morphological, and optoelectronic characterizations were performed on all films. Surface and in-depth chemical compositions were determined by X-ray photoelectron spectroscopy profiling, allowing a better understanding of the chemical reactions involved during the growth process. In the case of GaxS films, other Ga precursors have been tested. Our experimental observations, combined with reported ones and density functional theory calculation results have highlighted the specific reactivity of alkylamido precursor in ALD chemistry. Compositional studies revealed a significant O content which origin is discussed and represents an important challenge to address in ALD of sulfide materials in general.  相似文献   

18.
Hydrogen sulfide (H2S) has been recently recognized as an important signaling molecule in biological systems. Herein, we report the development of a fluorescence turn-on probe based on the structure of pomalidomide, a FDA approved drug for the treatment of multiple myeloma. Various characterizations demonstrated high selectivity and sensitivity of this probe toward H2S. Furthermore, the application of this probe to detect H2S in living cells was confirmed by flow cytometry and fluorescence imaging studies.  相似文献   

19.
The hydrogen sulfide chemisorption on lead sulfide at 22–100°C is studied by static testing in a vacuum and by pulsed chromatography. It is established that H2S is sorbed in reversible and irreversible forms and that the process is accompanied by the sample charging. Irreversibly sorbed hydrogen sulfide is removed by heating the sample in a vacuum or in an inert-gas stream at temperatures exceeding the adsorption temperature by 30–50°C.  相似文献   

20.
Adsorption of hydrogen sulfide (H2S) on the external and internal surface of Zn12O12 nanocluster was studied by using density functional calculations. The results indicate that the H2S molecule is physically adsorbed or chemically dissociated by the nanocluster. It was found that the H2S molecule can dissociate into –H and–SH fragments, suggesting that the nanocluster might be a potential catalyst for dissociation of the H2S molecule. Also, dissociation of H2S to S species in internal surface of the Zn12O12 nanocluster is energetically impossible. The HOMO–LUMO energy gap of H2S dissociation configuration is changed about 27.68 %, indicating that the electronic properties of the nanocluster by dissociation process have strongly changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号