首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mesoporous MnCo2O4 electrode material is made for bifunctional oxygen electrocatalysis. The MnCo2O4 exhibits both Co3O4‐like activity for oxygen evolution reaction (OER) and Mn2O3‐like performance for oxygen reduction reaction (ORR). The potential difference between the ORR and OER of MnCo2O4 is as low as 0.83 V. By XANES and XPS investigation, the notable activity results from the preferred MnIV‐ and CoII‐rich surface. The electrode material can be obtained on large‐scale with the precise chemical control of the components at relatively low temperature. The surface state engineering may open a new avenue to optimize the electrocatalysis performance of electrode materials. The prominent bifunctional activity shows that MnCo2O4 could be used in metal–air batteries and/or other energy devices.  相似文献   

2.
Increasing energy demands have stimulated intense research activities on reversible electrochemical conversion and storage systems with high efficiency, low cost, and environmental benignity. It is highly challenging but desirable to develop efficient bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A universal and facile method for the development of bifunctional electrocatalysts with outstanding electrocatalytic activity for both the ORR and OER in alkaline medium is reported. A mixture of Pt/C catalyst with superior ORR activity and a perovskite oxide based catalyst with outstanding OER activity was employed in appropriate ratios, and prepared by simple ultrasonic mixing. Nanosized platinum particles with a wide range of platinum to oxide mass ratios was realized easily in this way. The as‐formed Pt/C–oxide composites showed better ORR activity than a single Pt/C catalyst and better OER activity than a single oxide to bring about much improved bifunctionality (ΔE is only ≈0.8 V for Pt/C–BSCF; BSCF=Ba0.5Sr0.5Co0.8Fe0.2O3?δ), due to the synergistic effect. The electronic transfer mechanism and the rate‐determining step and spillover mechanism were two possible origins of such a synergistic effect. Additionally, the phenomenon was found to be universal, although the best performance could be reached at different platinum to oxide mass ratios for different oxide catalysts. This work thus provides an innovative strategy for the development of new bifunctional electrocatalysts with wide application potentials in high‐energy and efficient electrochemical energy storage and conversion.  相似文献   

3.
Rational design of non‐noble materials as highly efficient, economical, and durable bifunctional catalysts for oxygen evolution and reduction reactions (OER/ORR) is currently a critical obstacle for rechargeable metal‐air batteries. A new route involving S was developed to achieve atomic dispersion of Fe‐Nx species on N and S co‐decorated hierarchical carbon layers, resulting in single‐atom bifunctional OER/ORR catalysts for the first time. The abundant atomically dispersed Fe‐Nx species are highly catalytically active, the hierarchical structure offers more opportunities for active sites, and the electrical conductivity is greatly improved. The obtained electrocatalyst exhibits higher limiting current density and a more positive half‐wave potential for ORR, as well as a lower overpotential for OER under alkaline conditions. Moreover, a rechargeable Zn–air battery device comprising this hybrid catalyst shows superior performance compared to Pt/C catalyst. This work will open a new avenue to design advanced bifunctional catalysts for reversible energy storage and conversion devices.  相似文献   

4.
Besides their use in fuel cells for energy conversion through the oxygen reduction reaction (ORR), carbon‐based metal‐free catalysts have also been demonstrated to be promising alternatives to noble‐metal/metal oxide catalysts for the oxygen evolution reaction (OER) in metal–air batteries for energy storage and for the splitting of water to produce hydrogen fuels through the hydrogen evolution reaction (HER). This Review focuses on recent progress in the development of carbon‐based metal‐free catalysts for the OER and HER, along with challenges and perspectives in the emerging field of metal‐free electrocatalysis.  相似文献   

5.
Implementing sustainable energy conversion and storage technologies is highly reliant on crucial oxygen electrocatalysis, such as the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, the pursuit of low cost, energetic efficient and robust bifunctional catalysts for OER and ORR remains a great challenge. Herein, the novel Na-ion-deficient Na2−xCoP2O7 catalysts are proposed to efficiently electrocatalyze OER and ORR in alkaline solution. The engineering of Na-ion deficiency can tune the electronic structure of Co, and thus tailor the intrinsically electrocatalytic performance. Among the sodium cobalt phosphate catalysts, the Na1.95CoP2O7 (NCPO5) catalyst exhibits the lowest ΔE (EJ10,OER−EJ−1,ORR) of only 0.86 V, which favorably outperforms most of the reported non-noble metal catalysts. Moreover, the Na-ion deficiency can stabilize the phase structure and morphology of NCPO5 during the OER and ORR processes. This study highlights the Na-ion deficient Na2−xCoP2O7 as a promising class of low-cost, highly active and robust bifunctional catalysts for OER and ORR.  相似文献   

6.
Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords “silica”, “electrocatalysts”, “ORR”, “OER”, “HER”, “HOR”, “CO2RR”, “batteries”, and “supercapacitors”. The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.  相似文献   

7.
The high charge–discharge voltage gap is one of the main bottlenecks of zinc–air batteries (ZABs) because of the kinetically sluggish oxygen reduction/evolution reactions (ORR/OER) on the oxygen electrode side. Thus, an efficient bifunctional catalyst for ORR and OER is highly desired. Herein, honeycomb-like MnCo2O4.5 spheres were used as an efficient bifunctional electrocatalyst. It was demonstrated that both ORR and OER catalytic activity are promoted by MnIV-induced oxygen vacancy defects and multiple active sites. Importantly, the multivalent ions present in the material and its defect structure endow stable pseudocapacitance within the inactive region of ORR and OER; as a result, a low charge–discharge voltage gap (0.43 V at 10 mA cm−2) was achieved when it was employed in a flexible hybrid Zn-based battery. This mechanism provides unprecedented and valuable insights for the development of next-generation metal–air batteries.  相似文献   

8.
Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal–air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen‐doped, partially graphitized carbon framework. Benefiting from the unique pomegranate‐like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4‐based composite electrocatalyst exhibited a high half‐wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm?2 for OER. A single‐cell zinc–air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal–air batteries.  相似文献   

9.
The storage of solar energy in battery systems is pivotal for a sustainable society, which faces many challenges. Herein, a Zn–air battery is constructed with two cathodes of poly(1,4‐di(2‐thienyl))benzene (PDTB) and TiO2 grown on carbon papers to sandwich a Zn anode. The PDTB cathode is illuminated in a discharging process, in which photoelectrons are excited into the conduction band of PDTB to promote oxygen reduction reaction (ORR) and raise the output voltage. In a reverse process, holes in the valence band of the illuminated TiO2 cathode are driven for the oxygen evolution reaction (OER) by an applied voltage. A record‐high discharge voltage of 1.90 V and an unprecedented low charge voltage of 0.59 V are achieved in the photo‐involved Zn–air battery, regardless of the equilibrium voltage. This work offers an innovative pathway for photo‐energy utilization in rechargeable batteries.  相似文献   

10.
High-performance and low-cost bifunctional catalysts are crucial to energy conversion and storage devices. Herein, a novel oxygen electrode catalyst with high oxygen evolution reaction and oxygen reduction reaction (OER/ORR) performance is reported based on bimetal FeNi nanoparticles anchored on N-doped graphene-like carbon (FeNi/N−C). The complete 2D ultrathin carbon nanosheet is induced by etching and stripping of molten sodium chloride and its ions in the carbonization process at suitable temperature. The obtained FeNi/N−C catalyst exhibits rapid reaction kinetics for OER, efficient four electron transfer for ORR, and outstanding bifunctional performance with reversible oxygen electrode index of 0.87 V for OER/ORR. Zn-air batteries with a high open-circuit voltage of 1.46 V and a stable discharge voltage of 1.23 V are assembled using liquid electrolytes, zinc sheet as Zn-electrode and FeNi/N−C coating on carbon cloth as air-electrode. The specific capacity is as high as 816 mAh g−1 and there is extremely little decay after charge-discharge cycle time of 275 h for the FeNi/N−C as oxygen electrode catalyst in Zn-air battery, which are much better than that assembled with Pt/C−RuO2 catalyst.  相似文献   

11.
Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal–air batteries. It is highly challenging but desirable to develop low‐cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden–Popper family of Lan+1NinO3n+1 (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni?O bond lengths and the hyperstoichiometric oxides in the rock‐salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH? content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances.  相似文献   

12.
Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal–air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core–shell Co@Co3O4 nanoparticles embedded in CNT‐grafted N‐doped carbon‐polyhedra obtained by the pyrolysis of cobalt metal–organic framework (ZIF‐67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2, and RuO2 and thus ranking them among one of the best non‐precious‐metal electrocatalysts for reversible oxygen electrodes.  相似文献   

13.
The proper utilization of renewable energy sources has emerged as a major challenge in our pursuit of a sustainable and carbon-neutral energy landscape. Small molecule activation is a key component for proper utilization of renewable energy resources, where O2/H2O redox couple is reckoned to be a potential game changer. In this regard, electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have become the prime interest of catalyst designers. Typically, these ORR and OER electrocatalysts are developed distinctly; however, very soon, the requirement of a bidirectional ORR/OER electrocatalyst becomes obvious for practical applicability and rapid energy transduction purposes. A bidirectional catalyst is defined as a catalyst capable of driving a redox reaction in opposing directions. This review has portrayed the development of enzyme structure-inspired design of molecular bidirectional ORR/OER catalysts. The strategic incorporation of secondary and outer coordination sphere features has significantly enhanced the performance of these catalysts, which can be monitored via the key catalytic parameters. These bifunctional OER/ORR catalysts are vital for metal-air battery and fuel cell applications and appropriately poised to lay the foundation for an efficient, economical, and eco-friendly pathway for sustainable energy usage with the rational assembly of energy converting and storage devices.  相似文献   

14.
Developing noble‐metal‐free bifunctional oxygen electrocatalysts is of great significance for energy conversion and storage systems. Herein, we have developed a transformation method for growing NiMn‐based bimetal–organic framework (NiMn‐MOF) nanosheets on multi‐channel carbon fibers (MCCF) as a bifunctional oxygen electrocatalyst. Owing to the desired components and architecture, the MCCF/NiMn‐MOFs manifest comparable electrocatalytic performance towards oxygen reduction reaction (ORR) with the commercial Pt/C electrocatalyst and superior performance towards oxygen evolution reaction (OER) to the benchmark RuO2 electrocatalyst. X‐ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations reveal that the strong synergetic effect of adjacent Ni and Mn nodes within MCCF/NiMn‐MOFs effectively promotes the thermodynamic formation of key *O and *OOH intermediates over active NiO6 centers towards fast ORR and OER kinetics.  相似文献   

15.
Electrocatalysts for both the oxygen reduction and evolution reactions (ORR and OER) are vital for the performances of rechargeable metal–air batteries. Herein, we report an advanced bifunctional oxygen electrocatalyst consisting of porous metallic nickel‐iron nitride (Ni3FeN) supporting ordered Fe3Pt intermetallic nanoalloy. In this hybrid catalyst, the bimetallic nitride Ni3FeN mainly contributes to the high activity for the OER while the ordered Fe3Pt nanoalloy contributes to the excellent activity for the ORR. Robust Ni3FeN‐supported Fe3Pt catalysts show superior catalytic performance to the state‐of‐the‐art ORR catalyst (Pt/C) and OER catalyst (Ir/C). The Fe3Pt/Ni3FeN bifunctional catalyst enables Zn–air batteries to achieve a long‐term cycling performance of over 480 h at 10 mA cm−2 with high efficiency. The extraordinarily high performance of the Fe3Pt/Ni3FeN bifunctional catalyst makes it a very promising air cathode in alkaline electrolyte.  相似文献   

16.
Antiperovskite Co3InC0.7N0.3 nanomaterials with highly enhanced oxygen reduction reaction (ORR) performance were prepared by tuning nitrogen contents through a metal–organic framework (MOF)‐derived strategy. The nanomaterial surpasses all reported noble‐metal‐free antiperovskites and even most perovskites in terms of onset potential (0.957 V at J=0.1 mA cm?2) and half‐wave potential (0.854 V). The OER and zinc–air battery performance demonstrate its multifunctional oxygen catalytic activities. DFT calculation was performed and for the first time, a 4 e? dissociative ORR pathway on (200) facets of antiperovskite was revealed. Free energy studies showed that nitrogen substitution could strengthen the OH desorption as well as hydrogenation that accounts for the enhanced ORR performance. This work expands the scope for material design via tailoring the nitrogen contents for optimal reaction free energy and hence performance of the antiperovskite system.  相似文献   

17.
《中国化学快报》2023,34(7):107815
Mesoporous carbon supported with transition metals nanoparticles performs desired activities for oxygen reduction reaction (ORR) and clean energy conversion devices such as Zn–air batteries. In this work, we synthesized N-doped mesoporous carbon loaded with cobalt nanoparticles (CoMCN) through self-assembly method. There are sufficient mesopores on the carbon substrate which stem from the pore-forming agent. These mesopores can provide enough accessible active sites and profitable charge/mass transport for ORR. The high content of pyridinic and graphitic N is beneficial for promoting O2 adsorption and reduction. The smaller value of ID/IG indicates the higher degree of graphitization of CoMCN, providing better electronic conductivity. The half-wave potential of CoMCN is 0.865 V in basic solution, which is 24 mV more positive than that of the commercial Pt/C (0.841 V). In addition, CoMCN performs excellent methanol tolerance and stability under both basic and acidic conditions. The Zn–air battery assembled with CoMCN performs the larger power density and open-circuit voltage than the commercial Pt/C-based battery, indicating the potential application in energy conversion systems. This work provides thoughtful ideas for fabricating transition metal nanoparticles based porous carbon for electrocatalysis and metal–air batteries.  相似文献   

18.
A facile method is reported to form a honeycomb‐like porous nanomaterial by intercalation of iron nitrate using nature silk sericin (SS) as nitrogen and carbon source. A series of Fe2O3 nanoparticles anchored on Fe2O3‐N‐doped graphite carbon electrocatalysts (SS‐Fe) were synthesized, exhibits well‐defined pore structure and excellent oxygen evolution reaction (OER) catalytic activities. Among these materials, SS‐Fe‐0.5 shows the best performance, the overpotential of SS‐Fe‐0.5 at 10 mA · cm–2 is 440 mV (vs. RHE) and the Tafel slope is only 68 mV · dec–1. The results indicate that it is promising to the preparation of carbon catalyst materials using natural, renewable and abundant resources for electrocatalysis.  相似文献   

19.
The storage of solar energy in battery systems is pivotal for a sustainable society, which faces many challenges. Herein, a Zn–air battery is constructed with two cathodes of poly(1,4-di(2-thienyl))benzene (PDTB) and TiO2 grown on carbon papers to sandwich a Zn anode. The PDTB cathode is illuminated in a discharging process, in which photoelectrons are excited into the conduction band of PDTB to promote oxygen reduction reaction (ORR) and raise the output voltage. In a reverse process, holes in the valence band of the illuminated TiO2 cathode are driven for the oxygen evolution reaction (OER) by an applied voltage. A record-high discharge voltage of 1.90 V and an unprecedented low charge voltage of 0.59 V are achieved in the photo-involved Zn–air battery, regardless of the equilibrium voltage. This work offers an innovative pathway for photo-energy utilization in rechargeable batteries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号