首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The C3‐symmetric chiral propylated host‐type ligands (±)‐tris(isonicotinoyl)‐tris(propyl)‐cyclotricatechylene ( L1 ) and (±)‐tris(4‐pyridyl‐4‐benzoxy)‐tris(propyl)‐cyclotricatechylene ( L2 ) self‐assemble with PdII into [Pd6L8]12+ metallo‐cages that resemble a stella octangula. The self‐assembly of the [Pd6( L1 )8]12+ cage is solvent‐dependent; broad NMR resonances and a disordered crystal structure indicate no chiral self‐sorting of the ligand enantiomers in DMSO solution, but sharp NMR resonances occur in MeCN or MeNO2. The [Pd6( L1 )8]12+ cage is observed to be less favourable in the presence of additional ligand, than is its counterpart, where L=(±)‐tris(isonicotinoyl)cyclotriguaiacylene ( L1 a ). The stoichiometry of reactant mixtures and chemical triggers can be used to control formation of mixtures of homoleptic or heteroleptic [Pd6L8]12+ metallo‐cages where L= L1 and L1 a .  相似文献   

2.
Chiral nanosized confinements play a major role for enantioselective recognition and reaction control in biological systems. Supramolecular self‐assembly gives access to artificial mimics with tunable sizes and properties. Herein, a new family of [Pd2L4] coordination cages based on a chiral [6]helicene backbone is introduced. A racemic mixture of the bis‐monodentate pyridyl ligand L1 selectively assembles with PdII cations under chiral self‐discrimination to an achiral meso cage, cis‐[Pd2 L1P 2 L1M 2]. Enantiopure L1 forms homochiral cages [Pd2 L1P/M 4]. A longer derivative L2 forms chiral cages [Pd2 L2P/M 4] with larger cavities, which bind optical isomers of chiral guests with different affinities. Owing to its distinct chiroptical properties, this cage can distinguish non‐chiral guests of different lengths, as they were found to squeeze or elongate the cavity under modulation of the helical pitch of the helicenes. The CD spectroscopic results were supported by ion mobility mass spectrometry.  相似文献   

3.
Two novel tridentate ligands of 2,6‐bis‐[l‐(2,6‐dibromophenylimino) ethyl] pyridine (L1) and2‐acetyl‐6‐[1‐(2,6‐dibromophenylimino) ethyl] pyridine (L2) have been synthesized. The iron(II) complex of L1 and L2 has been characterized with the crystal structure of [Fe(L1)(L2)]2+ [FeCl4]2 CH2Cl2 [monoclinic, P21 (#11), a = 1.0562(4), b = 2.0928(4), c = 1.2914(2) nm, β = 100.12°, V = 2.810(1) nm3 Dc = 1.879 g/cm3 and Z = 2].  相似文献   

4.
Polynuclear Pd(II) and Ni(II) complexes of macrocyclic polyamine 3,6,9,16,19,22‐hexaazatricyclo[22.2.2.211,14]‐triaconta 11,13,24,26(l),27,29‐hexaene (L) in solution were investigated by electrospray ionization mass spectrometry (ESIMS). For methanol solution of complexes M2LX4 (M = Pd(II) and Ni(II), X= Cl and I), two main clusters of peaks were observed which can be assigned to [M2LX3]+ and [M2LX2]2+. When Pd2LCl4 was treated with 2 or 4 mol of AgNO3, it gave rise formation of Pd2LCl2 (NO3)2 · H2O and [Pd2L(H2O)m(NO3)n](4‐n)+, respectively. ESMS spectra show that the dissociation of the former in the ionization process gave peaks of [Pd2LCl2]2+ and [(Pd2LCl2)NO3]+, while dissociation of the later gave the peaks of [Pd2L(CH3CO2)2]2+ and [Pd2L(CH3CO2)2](NO3) + in the presence of acetic acid. Similar species were observed for Pd2LI4 when treated with 4 mol of AgNO3. When [Pd2L · (H2O)m(NO3)n](4‐n)+ reacted with 2 mol of oxalate anions at 40°C, [Pd4L2(C2O4)2(NO3)2]2+ and [Pd4L2(C2O4)2 (NO3)]3+ were detected. This implies the formation of square‐planar molecular box Pd4L2(C2O4)2(NO3)4 in which C2O4? may act as bridging ligands as confirmed by crystal structure analysis. The dissociation form and the stability of complex cations in gaseous state are also discussed. This work provides an excellent example of the usefulness of ESIMS in the identification of metal complexes in solution.  相似文献   

5.
A strategy is presented that enables the quantitative assembly of a heterobimetallic [PdPtL4]4+ cage. The presence of two different metal ions (PdII and PtII) with differing labilities enables the cage to be opened and closed selectively at one end upon treatment with suitable stimuli. Combining an inert PtII tetrapyridylaldehyde complex with a suitably substituted pyridylamine and PdII ions led to the assembly of the cage. 1H and DOSY NMR spectroscopy and ESI mass spectrometry data were consistent with the quantitative formation of the cage, and the heterobimetallic structure was confirmed using single‐crystal X‐ray crystallography. The structure of the host–guest adduct with a 2,6‐diaminoanthraquinone guest molecule was determined. Addition of N,N′‐dimethylaminopyridine (DMAP) resulted in the formation of the open‐cage [PtL4]2+ compound and [Pd(DMAP)4]2+ complex. This process could then be reversed, with the reformation of the cage, upon addition of p‐toluenesulfonic acid (TsOH).  相似文献   

6.
Two heterobimetallic Zn‐Nd phenylene‐bridged Schiff‐base ligands complexes [ZnNd L1 (Py)(NO3)3] ( 1 ) and [Zn L2 Nd(Py)(NO3)3]·MeCN ( 2 ) (Py = pyridine, H2L1 = N,N′‐bis‐ (3‐methoxy‐salicylidene)phenylene‐1,2‐diamine, H2L2 = N,N′‐bis‐5‐bromo‐3‐methoxy‐salicylidene)phenylene‐1,2‐diamine) were obtained. Both 1 and 2 were structurally characterized by X‐ray crystallography, and their near‐infrared (NIR) luminescent properties were determined. For the two complexes, the occupation of pyridine at the axial position of 3d Zn2+ ions could effectively prevent luminescent quenching arising from OH‐, NH‐ or CH oscillators of the solvates around the 4f Nd3+ ions, and the heavy‐atom (Br) effect of the Schiff‐base ligands on their NIR luminescent properties is also discussed.  相似文献   

7.
The synthesis of a centrally functionalized, ribbon‐shaped [6]polynorbornane ligand L that self‐assembles with PdII cations into a {Pd2 L 4} coordination cage is reported. The shape‐persistent {Pd2 L 4} cage contains two axial cationic centers and an array of four equatorial H‐bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6] with six diatomic ligands. Very strong binding of [Pt(CN)6]2? to the cage was observed, with the structure of the host–guest complex {[Pt(CN)6]@Pd2L4} supported by NMR spectroscopy, MS, and X‐ray data. The self‐assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h‐symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6]3? and square‐planar [Pt(CN)4]2? were strongly bound. Smaller octahedral anions such as [SiF6]2?, neutral carbonyl complexes ([M(CO)6]; M=Cr, Mo, W) and the linear [Ag(CN)2]? anion were only weakly bound, showing that both size and charge match are key factors for high‐affinity binding.  相似文献   

8.
Three new complexes {[Cu( L1 )2(NO3)2]?H2O}oo ( 1 ), {[Cu4( L2 )2(OAc)8]‐CH3CH2OH}oo ( 2 ) and [Cd2( L3 )3(NO3)4(H2O)2]oo ( 3 ) ( L1= 4‐phenyl‐7‐(pyridine‐3‐yl)‐1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazole, L2= 4‐(pyridine‐3‐yl)‐7‐phenyl‐1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazole, and L3= 4‐(pyridine‐4‐yl)‐7‐phenyl‐1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazole) have been synthesized and characterized by elemental analyses, IR spectra and single crystal X‐ray diffraction. The structural analyses reveal that complex 1 is a neutral 2‐D network structure with a 44 topology, 2 has a 1‐D neutral coordination chain with a [Cu2(CH3COO)4] dinuclear structural unit bridged by four acetate ions, and 3 is a neutral rhombohedral grid structure. All the complexes are air stable at room temperature. Furthermore, the fluorescent properties of complex 3 and corresponding ligand L3 have been investigated and discussed.  相似文献   

9.
Hydrocarbon‐bridged Metal Complexes. L Dicarbonyl Cyclopentadienyl Pyridoyl Iron Complexes as Ligands Dicarbonyl‐cyclopentadienyl‐2‐ and 3‐pyridoyl‐iron (L1, L2) and 2,6‐dicarbonyl‐pyridine‐bis(dicarbonyl‐cyclopentadienyl‐iron) (L3) function as ligands in metal complexes and the N,O‐chelates [(OC)4M(L1)] (M = Mo, W, 8 a, b ) and [(Ph3P)2Cu(L1)]+BF4 ( 9 ) were prepared. Monodentate coordination of L1 and L2 through the pyridine N‐atom occurs in the palladium(II) complexes [Cl2Pd(PnBu3)(L1)] ( 10 ), [Cl2Pd(PnBu3)(L2)] ( 11 ) and [Cl2Pd(L2)2] ( 12 ). Ligand L3 forms the O,N,O‐bis(chelate) [Cl2Zn(L3)] ( 13 ). The crystal and molecular structures of L1, 8 b (M = W), 9–11 and 13 were determined by X‐ray diffraction.  相似文献   

10.
This work demonstrates a new nonconventional ligand design, imidazole/pyridine‐based nonsymmetrical ditopic ligands ( 1 and 1 S ), to construct a dynamic open coordination cage from nonsymmetrical building blocks. Upon complex formation with Pd2+ at a 1:4 molar ratio, 1 and 1 S initially form mononuclear PdL4 complexes (Pd2+( 1 )4 and Pd2+( 1 S )4) without formation of a cage. The PdL4 complexes undergo a stoichiometrically controlled structural transition to Pd2L4 open cages ((Pd2+)2( 1 )4 and (Pd2+)2( 1 S )4) capable of anion binding, leading to turn‐on anion binding. The structural transitions between the Pd2L4 open cage and the PdL4 complex are reversible. Thus, stoichiometric addition (2 equiv) of free 1 S to the (Pd2+)2( 1 S )4 open cage holding a guest anion ((Pd2+)2( 1 S )4?G?) enables the structural transition to the Pd2+( 1 S )4 complex, which does not have a cage and thus causes the release of the guest anion (Pd2+( 1 S )4+G?).  相似文献   

11.
The metal–organic framework (MOF) [Pd(2‐pymo)2]n (2‐pymo=2‐pyrimidinolate) was used as catalyst in the hydrogenation of 1‐octene. During catalytic hydrogenation, the changes at the metal nodes and linkers of the MOF were investigated by in situ X‐ray absorption spectroscopy (XAS) and IR spectroscopy. With the help of extended X‐ray absorption fine structure and X‐ray absorption near edge structure data, Quick‐XAS, and IR spectroscopy, detailed insights into the catalytic relevance of Pd2+/Pd0 in the hydrogenation of 1‐octene could be achieved. Shortly after exposure of the catalyst to H2 and simultaneously with the hydrogenation of 1‐octene, the aromatic rings of the linker molecules are hydrogenated rapidly. Up to this point, the MOF structure remained intact. After completion of linker hydrogenation, the linkers were also protonated. When half of the linker molecules were protonated, the onset of reduction of the Pd2+ centers to Pd0 was observed and the hydrogenation activity decreased, followed by fast reduction of the palladium centers and collapse of the MOF structure. Major fractions of Pd0 are only observed when the hydrogenation of 1‐octene is almost finished. Consequently, the Pd2+ nodes of the MOF [Pd(2‐pymo)2]n are identified as active centers in the hydrogenation of 1‐octene.  相似文献   

12.
The title complexes, hexaaquacobalt(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexaaquanickel(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octahedral geometries. Two [Bi(pydc)2] units (pydc is pyridine‐2,6‐dicarboxylate) are linked via bridging carboxylate groups into centrosymmetric [Bi2(pydc)4]2− dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2− anions and solvent water molecules form multiple hydrogen bonds to generate a supramolecular three‐dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2− dimers provides an additional supramolecular synthon that directs and facilitates the crystal packing of both (I) and (II).  相似文献   

13.
Structural changes to metallosupramolecular assemblies resulting in the release or uptake of guests are currently well established, whereas transformations turning on and off specific self-recognition are far less developed. We report a novel ligand (2,6-bis(1-(3-pyridin-4-yl)phenyl-1H-1,2,3-triazol-4-yl)pyridine) possessing a tridentate central metal-binding site flanked by two pendant pyridyl arms. In a 2:1 ratio with PdII metal ions, a spiro-type [PdL2]2+ “Figure-of-eight” complex forms with the central tridentate binding pocket unoccupied. The introduction of an additional one equivalent of PdII metal ion results in the conversion to a dimeric [Pd2L2]4+ molecule with the tridentate pocket occupied. There is site-specific self-recognition between dimers in solution with strong NOE peaks between adjacent molecules. The self-recognition between dimers can be turned off in two ways: firstly, adding another equivalent of PdII metal ion brings about binding to the previously uncoordinated pyridyl arms that are key to the self-recognition event, and; secondly, addition of sufficient ligand to return the stoichiometry to 2:1 regenerates the [PdL2]2+ complex. Hence, the self-recognition event can be turned on or off through simple variation of L:PdII stoichiometry.  相似文献   

14.
A 1,1′‐binaphthyl‐based bis(pyridine) ligand ( 1 ) was prepared in racemic and enantiomerically pure form to study the formation of [Pd2( 1 )4] complexes upon coordination to palladium(II) ions with regard to the degree of chiral self‐sorting. The self‐assembly process proceeds in a highly selective narcissistic self‐recognition manner to give only homochiral supramolecular M2L4 cages, which were characterized by ESI‐MS, NMR, and electronic circular dichroism (ECD) spectroscopy, as well as by single‐crystal XRD analysis.  相似文献   

15.
Cations derived by protonation of the ligand title compound (L1) have been structurally characterized in their di‐ and tetra‐ protonated forms in the salts [H2L1][ClO4]2·2H2O and [H4L1][ZnCl4]2·4H2O. In both structures, one half of the formula unit comprises the asymmetric unit of the structure, the macrocycle being centrosymmetric, with the two macrocycles adopting similar conformations. In both salts, a pair of diagonally opposed macrocyclic secondary amine groups are protonated; in the [H4L1]4+ salt, the additional pair of protons are accommodated on the exocyclic pendant amine groups. The dispositions of the pendent amines differ between the two structures, being ‘equatorial’ with respect to the macrocyclic ring in the [H2L1]2+ salt, and ‘axial’ in the [H4L1]4+ salt. In other structurally characterized compounds containing [H4L1]4+ the equatorial disposition was found in the ferricyanide adduct, while in the tetraperchlorate salt the axial disposition was identified. The differences in disposition of the exocyclic groups are ascribed to the extensive H‐bonding in the lattices.  相似文献   

16.
A convenient three‐step procedure for the synthesis of three types of 3‐aryl‐2‐sulfanylthienopyridines 4, 8 , and 12 has been developed. The first step of the synthesis of thieno[2,3‐b]pyridine derivatives 4 is the replacement of the halo with a (sulfanylmethyl)sulfanyl group in aryl(2‐halopyridin‐3‐yl)methanones 1 by successive treatment with Na2S?9 H2O and chloromethyl sulfides to give aryl{2‐[(sulfanylmethyl)sulfanyl]pyridin‐3‐yl}methanones 2 . In the second step, these were treated with LDA (LiNiPr2) to give 3‐aryl‐2,3‐dihydro‐2‐sulfanylthieno[2,3‐b]pyridin‐3‐ols 3 , which were dehydrated in the last step with SOCl2 in the presence of pyridine to give the desired products. Similarly, thieno[2,3‐c]pyridine and thieno[3,2‐c]pyridine derivatives, 8 and 12 , respectively, can be prepared from aryl(3‐chloropyridin‐4‐yl)methanones 5 and aryl(4‐chloropyridin‐3‐yl)methanones 9 , respectively.  相似文献   

17.
A simple self‐assembled [Pd2 L 4] coordination cage consisting of four carbazole‐based ligands was found to dimerize into the interpenetrated double cage [3 X@Pd4 L 8] upon the addition of 1.5 equivalents of halide anions (X=Cl?, Br?). The halide anions serve as templates, as they are sandwiched by four PdII cations and occupy the three pockets of the entangled cage structure. The subsequent addition of larger amounts of the same halide triggers another structural conversion, now yielding a triply catenated link structure in which each PdII node is trans‐coordinated by two pyridine donors and two halide ligands. This simple system demonstrates how molecular complexity can increase upon a gradual change of the relative concentrations of reaction partners that are able to serve different structural roles.  相似文献   

18.
In the structure of the title compound, 28,31,36,39‐tetraoxa‐9,17,42‐triaza‐1,25‐diazoniapentacyclo[23.8.5.111,15.03,8.018,23]nonatriaconta‐3,5,7,9,11,13,15,16,18,20,22‐undecene bis(perchlorate), C33H43N5O42+·2ClO4 or (H2L)(ClO4)2, the cation and one of the two independent anions lie on crystallographic twofold axes, while the second perchlorate anion is disordered about a centre of inversion. The conformation of the macrobicycle L is conditioned by two strong intramolecular hydrogen‐bonding interactions involving the pivot and imine N atoms, and is quite different from that observed when a metal ion is placed inside its cavity. The two imine groups are not coplanar with the pyridine moiety, and the deviation from planarity is considerably larger than that found in the corresponding Ba complex. Moreover, the fold of the macrobicycle in H2L2+ causes a significant approach of the two pivot N atoms compared with their disposition in the Ba complex. This is the first X‐ray crystal structure analysis of an uncoordinated Schiff base lateral macrobicycle.  相似文献   

19.
Syntheses and Structures of the First Polynuclear Manganese Guanidine Complexes and of the First Manganese Complexes Containing Mono‐Protonated Bis‐Guanidine Ligands Metallation of two differently alkylated bis‐guanidine ligands containing a central pyridine functionality, namely N2,N6‐bis(1,3‐dimethylimidazolidin‐2‐ylidene)pyridine‐2,6‐diamine (DMEG2py {N7C15H23}, L1 ) and N2,N6‐bis(1,1,3,3‐tetramethyl‐guanidine)pyridine‐2,6‐diamine (TMG2py {N7C15H27}, L2 ), with manganese(II) bromide and chloride leads to the formation of the novel complexes [MnBr3(TMG2pyH)] ([MnBr3(N7C15H28)], ( 1 )), [MnBr2(DMEG2pyH)2]2+ ([MnBr2(N7C15H24)2]2+, ( 2 )), and [Mn2X3(DMEG2py)2]+ ([Mn2X3(N7C15H23)2]+; ( 3a ): X = Cl; ( 3b ): X = Br). 2 and 3 have been isolated as tetrahalomanganate salts. Single crystal X‐ray analyses show that all of them contain the manganese atoms in unusual pseudo‐tetrahedral coordination environments. 3a· 1/2[MnCl4] and 3b· 1/2[MnBr4] are isostructural and crystallize in the monoclinic space group C2c. The complex cations 3 exhibit a binuclear structure with two terminal and one bridging halide ion, respectively. The compounds 1 and 2 are mononuclear species crystallizing in the orthorhombic space group P212121 in the case of 1 and in the triclinic space group in the case of 2· [MnBr4]. The ability of L1 and L2 to bind either two manganese ions naked or only one of them in the mono‐protonated stage is the most remarkable property of these ligands. Further striking features are the spatial arrangements of the pyridine‐to‐manganese bonds which deviate significantly from the situation expected for nitrogen donor functions in sp2 hybridized stages. Moreover, regarding each chelating ligand portion as a component which occupies one coordination site of the metal atom, a pseudo‐tetrahedral metal coordination is identified. To our knowledge, 1 and 2 are the first manganese complexes containing mono‐protonated bis‐guanidine ligands, whereas 3a and 3b are the first polynuclear manganese‐guanidine compounds known so far.  相似文献   

20.
Molecular recognition continues to be an area of keen interest for supramolecular chemists. The investigated [M( L )2]2+ metallo‐ligands (M=PdII, PtII, L =2‐(1‐(pyridine‐4‐methyl)‐1 H‐1,2,3‐triazol‐4‐yl)pyridine) form a planar cationic panel with vacant pyridyl binding sites. They interact with planar neutral aromatic guests through π–π and/or metallophilic interactions. In some cases, the metallo‐ligands also interacted in the solid state with AgI either through coordination to the pendant pyridyl arms, or through metal–metal interactions, forming coordination polymers. We have therefore developed a system that reliably recognises a planar electron‐rich guest in solution and in the solid state, and shows the potential to link the resultant host–guest adducts into extended solid‐state structures. The facile synthesis and ready functionalisation of 2‐pyridyl‐1,2,3‐triazole ligands through copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) “click” chemistry should allow for ready tuning of the electronic properties of adducts formed from these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号