首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new two‐dimensional fractional polynomials based on the orthonormal Bernstein polynomials has been introduced to provide an approximate solution of nonlinear fractional partial Volterra integro‐differential equations. For this aim, the fractional‐order orthogonal Bernstein polynomials (FOBPs) are constructed, and its operational matrices of integration, fractional‐order integration, and derivative in the Caputo sense and product operational matrix are derived. These operational matrices are utilized to reduce the under study problem to a nonlinear system of algebraic equations. Using the approximation of FOBPs, the convergence analysis and error estimate associated to the proposed problem have been investigated. Finally, several examples are included to clarify the validity, efficiency, and applicability of the proposed technique via FOBPs approximation.  相似文献   

2.
In this paper, we state and prove a new formula expressing explicitly the integratives of Bernstein polynomials (or B‐polynomials) of any degree and for any fractional‐order in terms of B‐polynomials themselves. We derive the transformation matrices that map the Bernstein and Legendre forms of a degree‐n polynomial on [0,1] into each other. By using their transformation matrices, we derive the operational matrices of integration and product of the Bernstein polynomials. These matrices together with the Tau method are then utilized to reduce the solution of this problem to the solution of a system of algebraic equations. The method is applied to solve linear and nonlinear fractional differential equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical method for solving the high‐order linear differential equations with variable coefficients under the mixed conditions is presented. The method is based on the hybrid Legendre and Taylor polynomials. The solution is obtained in terms of Legendre polynomials. Comparison of the present solution is made with the existing solution and excellent agreement is noted. Illustrative examples are included to demonstrate the validity and applicability of the technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

4.
In this paper, a numerical method is presented to obtain and analyze the behavior of numerical solutions of distributed order fractional differential equations of the general form in the time domain with the Caputo fractional derivative. The suggested method is based on the Müntz–Legendre wavelet approximation. We derive a new operational vector for the Riemann–Liouville fractional integral of the Müntz–Legendre wavelets by using the Laplace transform method. Applying this operational vector and collocation method in our approach, the problem can be reduced to a system of linear and nonlinear algebraic equations. The arising system can be solved by the Newton method. Discussion on the error bound and convergence analysis for the proposed method is presented. Finally, seven test problems are considered to compare our results with other well‐known methods used for solving these problems. The results in the tabulated tables highlighted that the proposed method is an efficient mathematical tool for analyzing distributed order fractional differential equations of the general form.  相似文献   

5.
In this paper, we present a novel discrete scheme based on Genocchi polynomials and fractional Laguerre functions to solve multiterm variable‐order time‐fractional partial differential equations (M‐V‐TFPDEs) in the large interval. In this purpose, the accurate modified operational matrices are constructed to reduce the problems into a system of algebraic equations. Also, the computational algorithm based on the method and modified operational matrices in the large interval is easily implemented. Furthermore, we discuss the error estimation of the proposed method. Ultimately, to confirm our theoretical analysis and accuracy of numerical approach, several examples are presented.  相似文献   

6.
In this paper, the alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear multi-order fractional differential equations (FDEs). First, the operational matrix of fractional integration of an arbitrary order and the product operational matrix are derived for ALPs. These matrices together with the spectral Tau method are then utilized to reduce the solution of the mentioned equations into the one of solving a system of nonlinear algebraic equations with unknown ALP coefficients of the exact solution. The fractional derivatives are considered in the Caputo sense and the fractional integration is described in the Riemann-Liouville sense. Numerical examples illustrate that the present method is very effective for linear and nonlinear multi-order FDEs and high accuracy solutions can be obtained only using a small number of ALPs.  相似文献   

7.
In this paper, we apply the Jacobi collocation method for solving nonlinear fractional differential equations with integral boundary conditions. Due to existence of integral boundary conditions, after reformulation of this equation in the integral form, the method is proposed for solving the obtained integral equation. Also, the convergence and stability analysis of the proposed method are studied in two main theorems. Furthermore, the optimum degree of convergence in the L2 norm is obtained for this method. Furthermore, some numerical examples are presented in order to illustrate the performance of the presented method. Finally, an application of the model in control theory is introduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we introduced an accurate computational matrix method for solving systems of high order fractional differential equations. The proposed method is based on the derived relation between the Chebyshev coefficient matrix A of the truncated Chebyshev solution u(t)u(t) and the Chebyshev coefficient matrix A(ν)A(ν) of the fractional derivative u(ν)u(ν). The fractional derivatives are presented in terms of Caputo sense. The matrix method for the approximate solution for the systems of high order fractional differential equations (FDEs) in terms of Chebyshev collocation points is presented. The systems of FDEs and their conditions (initial or boundary) are transformed to matrix equations, which corresponds to system of algebraic equations with unknown Chebyshev coefficients. The remaining set of algebraic equations is solved numerically to yield the Chebyshev coefficients. Several numerical examples for real problems are provided to confirm the accuracy and effectiveness of the present method.  相似文献   

9.
The model of pollution for a system of 3 lakes interconnected by channels is extended using Caputo‐Hadamard fractional derivatives of different orders αi∈(0,1), i=1,2,3. A numerical approach based on ln‐shifted Legendre polynomials is proposed to solve the considered fractional model. No discretization is needed in our approach. Some numerical experiments are provided to illustrate the presented method.  相似文献   

10.
In this paper, a new computational scheme based on operational matrices (OMs) of two‐dimensional wavelets is proposed for the solution of variable‐order (VO) fractional partial integro‐differential equations (PIDEs). To accomplish this method, first OMs of integration and VO fractional derivative (FD) have been derived using two‐dimensional Legendre wavelets. By implementing two‐dimensional wavelets approximations and the OMs of integration and variable‐order fractional derivative (VO‐FD) along with collocation points, the VO fractional partial PIDEs are reduced into the system of algebraic equations. In addition to this, some useful theorems are discussed to establish the convergence analysis and error estimate of the proposed numerical technique. Furthermore, computational efficiency and applicability are examined through some illustrative examples.  相似文献   

11.
In this paper, we derived the shifted Jacobi operational matrix (JOM) of fractional derivatives which is applied together with spectral tau method for numerical solution of general linear multi-term fractional differential equations (FDEs). A new approach implementing shifted Jacobi operational matrix in combination with the shifted Jacobi collocation technique is introduced for the numerical solution of nonlinear multi-term FDEs. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem. The proposed methods are applied for solving linear and nonlinear multi-term FDEs subject to initial or boundary conditions, and the exact solutions are obtained for some tested problems. Special attention is given to the comparison of the numerical results obtained by the new algorithm with those found by other known methods.  相似文献   

12.
Shifted Legendre polynomial functions are employed to solve the linear-quadratic optimal control problem for lumped parameter system. Using the characteristics of the shifted Legendre polynomials, the system equations and the adjoint equations of the optimal control problem are reduced to functional ordinary differential equations. The solution of the functional differential equations are obtained in a series of the shifted Legendre functions. The operational matrix for the integration of the shifted Legendre polynomial functions is also introduced in the simulation step in order to simplify the computational procedure. An illustrative example of an optimal control problem is given, and the computational results are compared with those of the exact solution. The proposed method is effective and accurate.  相似文献   

13.
This paper is motivated from some recent papers treating the problem of the existence of a solution for impulsive differential equations with fractional derivative. We firstly show that the formula of solutions in cited papers are incorrect. Secondly, we reconsider a class of impulsive fractional differential equations and introduce a correct formula of solutions for a impulsive Cauchy problem with Caputo fractional derivative. Further, some sufficient conditions for existence of the solutions are established by applying fixed point methods. Some examples are given to illustrate the results.  相似文献   

14.
This paper provides a robust convergence checking method for nonlinear differential equations of fractional order with consideration of homotopy perturbation technique. The differential operators are taken in the Caputo sense. Some theorems to prove the existence and uniqueness of the series solutions are presented. Results show that the proposed theoretical analysis is accurate.  相似文献   

15.
The main aim of this paper is to apply the trigonometric wavelets for the solution of the Fredholm integro‐differential equations of nth‐order. The operational matrices of derivative for trigonometric scaling functions and wavelets are presented and are utilized to reduce the solution of the Fredholm integro‐differential equations to the solution of algebraic equations. Furthermore, we get an estimation of error bound for this method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

17.
The aim of the present work is to find the numerical solutions for time‐fractional coupled Burgers equations using a new novel technique, called fractional natural decomposition method (FNDM). Two examples are considered in order to illustrate and validate the efficiency of the proposed algorithm. The numerical simulation has been conducted to ensure the exactness of the present method, and the obtained solutions are offered graphically to reveal the applicability and reliability of the FNDM. The outcomes of the study reveal that the FNDM is computationally very effective and accurate to study the (2 + 1)‐dimensional coupled Burger equations of arbitrary order.  相似文献   

18.
This paper presents a shifted fractional‐order Jacobi orthogonal function (SFJF) based on the definition of the classical Jacobi polynomial. A new fractional integral operational matrix of the SFJF is presented and derived. We propose the spectral Tau method, in conjunction with the operational matrices of the Riemann–Liouville fractional integral for SFJF and derivative for Jacobi polynomial, to solve a class of time‐fractional partial differential equations with variable coefficients. In this algorithm, the approximate solution is expanded by means of both SFJFs for temporal discretization and Jacobi polynomials for spatial discretization. The proposed tau scheme, both in temporal and spatial discretizations, successfully reduced such problem into a system of algebraic equations, which is far easier to be solved. Numerical results are provided to demonstrate the high accuracy and superiority of the proposed algorithm over existing ones. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The main purpose of this work is to investigate an initial boundary value problem related to a suitable class of variable order fractional integro‐partial differential equations with a weakly singular kernel. To discretize the problem in the time direction, a finite difference method will be used. Then, the Sinc‐collocation approach combined with the double exponential transformation is employed to solve the problem in each time level. The proposed numerical algorithm is completely described and the convergence analysis of the numerical solution is presented. Finally, some illustrative examples are given to demonstrate the pertinent features of the proposed algorithm.  相似文献   

20.
In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ)(t)=f(t,y(t),y(β1)(t),y(β2)(t),…,y(βn)(t)) with μ>βn>βn-1>…>β1>0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号