首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal‐O2 batteries, and are believed to form and decompose reversibly in metal‐O2/CO2 cells. In these cathodes, Li2CO3 decomposes to CO2 when exposed to potentials above 3.8 V vs. Li/Li+. However, O2 evolution, as would be expected according to the decomposition reaction 2 Li2CO3→4 Li++4 e?+2 CO2+O2, is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen (1O2) forms upon oxidizing Li2CO3 in an aprotic electrolyte and therefore does not evolve as O2. These results have substantial implications for the long‐term cyclability of batteries: they underpin the importance of avoiding 1O2 in metal‐O2 batteries, question the possibility of a reversible metal‐O2/CO2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition‐metal cathodes with residual Li2CO3.  相似文献   

2.
Aprotic sodium–O2 batteries require the reversible formation/dissolution of sodium superoxide (NaO2) on cycling. Poor cycle life has been associated with parasitic chemistry caused by the reactivity of electrolyte and electrode with NaO2, a strong nucleophile and base. Its reactivity can, however, not consistently explain the side reactions and irreversibility. Herein we show that singlet oxygen (1O2) forms at all stages of cycling and that it is a main driver for parasitic chemistry. It was detected in‐ and ex‐situ via a 1O2 trap that selectively and rapidly forms a stable adduct with 1O2. The 1O2 formation mechanism involves proton‐mediated superoxide disproportionation on discharge, rest, and charge below ca. 3.3 V, and direct electrochemical 1O2 evolution above ca. 3.3 V. Trace water, which is needed for high capacities also drives parasitic chemistry. Controlling the highly reactive singlet oxygen is thus crucial for achieving highly reversible cell operation.  相似文献   

3.
The controlled generation of singlet oxygen is of great interest owing to its potential applications including industrial wastewater treatment, photochemistry, and photodynamic therapy. Two photochromic metal–organic frameworks, PC‐PCN and SO‐PCN, have been developed. A photochromic reaction has been successfully realized in PC‐PCN while maintaining its single crystallinity. In particular, as a solid‐state material which inherently integrates the photochromic switch and photosensitizer, SO‐PCN has demonstrated reversible control of 1O2 generation. Additionally, SO‐PCN shows catalytic activity towards photooxidation of 1,5‐dihydroxynaphthalene.  相似文献   

4.
5.
6.
Singlet oxygen (1O2) is of great interest because of its potential applications in photodynamic therapy, photooxidation of toxic molecules, and photochemical synthesis. Herein, we report novel metallophthalocyanine (MPc) based conjugated microporous polymers (MPc‐CMPs) as photosensitizers for the generation of 1O2. The rigid microporous structure efficiently improves the exposure of the majority of the MPc units to oxygen. The MPc‐CMPs also exhibit an enhanced light‐harvesting capability in the far‐red region through their extended π‐conjugation systems. Their microporous structure and excellent absorption capability for long‐wavelength photons result in the MPc‐CMPs showing high efficiency for 1O2 generation upon irradiation with 700 nm light, as evident by using 1,3‐diphenylisobenzofuran as an 1O2 trap. These results indicate that MPc‐CMPs can be considered as promising photosensitizers for the generation of 1O2.  相似文献   

7.
CoFe2O4/multiwalled carbon nanotubes (MWCNTs) hybrid materials were synthesized by a hydrothermal method. Field emission scanning electron microscopy and transmission electron microscopy analysis confirmed the morphology of the as‐prepared hybrid material resembling wintersweet flower “buds on branches”, in which CoFe2O4 nanoclusters, consisting of nanocrystals with a size of 5–10 nm, are anchored along carbon nanotubes. When applied as an anode material in lithium ion batteries, the CoFe2O4/MWCNTs hybrid material exhibited a high performance for reversible lithium storage. In particular, the hybrid anode material delivered reversible lithium storage capacities of 809, 765, 539, and 359 mA h g?1 at current densities of 180, 450, 900, and 1800 mA g?1, respectively. The superior performance of CoFe2O4/MWCNTs hybrid materials could be ascribed to the synergistic pinning effect of the wintersweet‐flower‐like nanoarchitecture. This strategy could also be applied to synthesize other metal oxide/CNTs hybrid materials as high‐capacity anode materials for lithium ion batteries.  相似文献   

8.
A facile method is presented for the large‐scale preparation of rationally designed mesocrystalline MnO@carbon core–shell nanowires with a jointed appearance. The nanostructures have a unique arrangement of internally encapsulated highly oriented and interconnected MnO nanorods and graphitized carbon layers forming an external coating. Based on a comparison and analysis of the crystal structures of MnOOH, Mn2O3, and MnO@C, we propose a sequential topotactic transformation of the corresponding precursors to the products. Very interestingly, the individual mesoporous single‐crystalline MnO nanorods are strongly interconnected and maintain the same crystallographic orientation, which is a typical feature of mesocrystals. When tested for their applicability to Li‐ion batteries (LIB), the MnO@carbon core–shell nanowires showed excellent capacity retention, superior cycling performance, and high rate capability. Specifically, the MnO@carbon core–shell nanostructures could deliver reversible capacities as high as 801 mA h g?1 at a high current density of 500 mA g?1, with excellent electrochemical stability after testing over 200 cycles, indicating their potential application in LIBs. The remarkable electrochemical performance can mainly be attributed to the highly uniform carbon layer around the MnO nanowires, which is not only effective in buffering the structural strain and volume variations of anodes during repeated electrochemical reactions, but also greatly enhances the conductivity of the electrode material. Our results confirm the feasibility of using these rationally designed composite materials for practical applications. The present strategy is simple but very effective, and appears to be sufficiently versatile to be extended to other high‐capacity electrode materials with large volume variations and low electrical conductivities.  相似文献   

9.
Aprotic lithium–oxygen (Li–O2) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen (1Δg) is formed upon Li2O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time‐ and voltage‐resolved in operando EPR spectroscopy in a purpose‐built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long‐overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li–O2 cells.  相似文献   

10.
Development of a photosensitizing system that can reversibly control the generation of singlet oxygen (1O2) is of great interest for photodynamic therapy (PDT). Recently several photosensitizer–photochromic‐switch dyads were reported as a potential means of the 1O2 control in PDT. However, the delivery of such a homogeneous molecular dyad as designed (e.g., optimal molar ratio) is extremely challenging in living systems. Herein we show a Zr‐MOF nanoplatform, demonstrating energy transfer‐based 1O2 controlled PDT. Our strategy allows for tuning the ratios between photosensitizer and the switch molecule, enabling maximum control of 1O2 generation. Meanwhile, the MOF provides proximal placement of the functional entities for efficient intermolecular energy transfer. As a result, the MOF nanoparticle formulation showed enhanced PDT efficacy with superior 1O2 control compared to that of homogeneous molecular analogues.  相似文献   

11.
王乃兴 《合成化学》2001,9(4):350-351
Fullerene[60]在光的作用下可以诱导产生单线态氧(^1O2),C60H36是一个富电子化合物,在室温下,单线态氧可以氧化C60H36,使透明的C60H36溶液(甲苯和已烷作溶剂)在短时间内变混浊,结果产生氧化产物C60H36-x(x=1-18)。  相似文献   

12.
13.
Understanding and controlling the kinetics of O2 reduction in the presence of Li+‐containing aprotic solvents, to either Li+‐O2? by one‐electron reduction or Li2O2 by two‐electron reduction, is instrumental to enhance the discharge voltage and capacity of aprotic Li‐O2 batteries. Standard potentials of O2/Li+‐O2? and O2/O2? were experimentally measured and computed using a mixed cluster‐continuum model of ion solvation. Increasing combined solvation of Li+ and O2? was found to lower the coupling of Li+‐O2? and the difference between O2/Li+‐O2? and O2/O2? potentials. The solvation energy of Li+ trended with donor number (DN), and varied greater than that of O2? ions, which correlated with acceptor number (AN), explaining a previously reported correlation between Li+‐O2? solubility and DN. These results highlight the importance of the interplay between ion–solvent and ion–ion interactions for manipulating the energetics of intermediate species produced in aprotic metal–oxygen batteries.  相似文献   

14.
Although metal‐ion‐directed self‐assembly has been widely used to construct a vast number of macrocycles and cages, it is only recently that the biological properties of these systems have begun to be explored. However, up until now, none of these studies have involved intrinsically photoexcitable self‐assembled structures. Herein we report the first metallomacrocycle that functions as an intracellular singlet oxygen sensitizer. Not only does this Ru2Re2 system possess potent photocytotoxicity at light fluences below those used for current medically employed systems, it offers an entirely new paradigm for the construction of sensitizers for photodynamic therapy.  相似文献   

15.
It is well accepted that metallic tin as a discharge (reduction) product of SnOx cannot be electrochemically oxidized below 3.00 V versus Li+/Li0 due to the high stability of Li2O, though a similar oxidation can usually occur for a transition metal formed from the corresponding oxide. In this work, nanosized Ni2SnO4 and NiO/SnO2 nanocomposite were synthesized by coprecipitation reactions and subsequent heat treatment. Owing to the catalytic effect of nanosized metallic nickel, metallic tin can be electrochemically oxidized to SnO2 below 3.00 V. As a result, the reversible lithium‐storage capacities of the nanocomposite reach 970 mAh g?1 or above, much higher than the theoretical capacity (ca. 750 mAh g?1) of SnO2, NiO, or their composites. These findings extend the well‐known electrochemical conversion reaction to non‐transition‐metal compounds and may have important applications, for example, in constructing high‐capacity electrode materials and efficient catalysts.  相似文献   

16.
The generation of oxygen‐containing functionalities on pristine carbon surfaces is investigated and shown to be light sensitive, specifically to infra‐red radiation. A mechanistic route involving singlet oxygen, 1O2, is proposed and evidenced.  相似文献   

17.
Herein, we introduce a 4.0 V class high‐voltage cathode material with a newly recognized sodium superionic conductor (NASICON)‐type structure with cubic symmetry (space group P213), Na3V(PO3)3N. We synthesize an N‐doped graphene oxide‐wrapped Na3V(PO3)3N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all‐climate performance were carefully investigated. A near‐zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X‐ray diffraction, and the in situ X‐ray absorption spectra revealed the V3.2+/V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high‐voltage NASICON‐type Na3V(PO3)3N composite is a competitive cathode material for sodium‐ion batteries and will receive more attention and studies in the future.  相似文献   

18.
Solid‐state Li metal battery technology is attractive, owing to the high energy density, long lifespans, and better safety. A key obstacle in this technology is the unstable Li/solid‐state electrolyte (SSE) interface involving electrolyte reduction by Li. Herein we report a novel approach based on the use of a nanocomposite consisting of organic elastomeric salts (LiO‐(CH2O)n‐Li) and inorganic nanoparticle salts (LiF, ‐NSO2‐Li, Li2O), which serve as an interphase to protect Li10GeP2S12 (LGPS), a highly conductive but reducible SSE. The nanocomposite is formed in situ on Li via the electrochemical decomposition of a liquid electrolyte, thus having excellent chemical and electrochemical stability, affinity for Li and LGPS, and limited interfacial resistance. XPS depth profiling and SEM show that the nanocomposite effectively restrained the reduction of LGPS. Stable Li electrodeposition over 3000 h and a 200 cycle life for a full cell were achieved.  相似文献   

19.
20.
Construction of GdIII photosensitizers is important for designing theranostic agents owing to the unique properties arising from seven unpaired f electrons of the Gd3+ ion. Combining these with the advantages of porpholactones with tunable NIR absorption, we herein report the synthesis of GdIII complexes Gd‐1 – 4 ( 1 , porphyrin; 2 , porpholactone; 3 and 4 , cis‐ and trans‐porphodilactone, respectively) and investigated their function as singlet oxygen (1O2) photosensitizers. These Gd complexes displayed 1O2 quantum yields (ΦΔs) from 0.64–0.99 with the order Gd‐1 < Gd‐2 < Gd‐3 < Gd‐4 . The gradually enhanced 1O2 sensitization after β‐oxazolone moiety replacement was ascribed to the narrowing of the energy gap (ΔE) between the lowest triplet states (T1) of the ligand and the energy level of the 1Δg3Σg transition of 1O2. In particular, Gd‐4 is capable of excitation in the visible to NIR region (400–700 nm) with a quantum yield near unity. These Gd complexes were first demonstrated as efficient photosensitizers in photocatalysis such as oxidative C?H bond functionalization of secondary or tertiary amines, and the oxygenation of the natural product cholesterol. Finally, after glycosylation, these water‐soluble Gd complexes showed potential applications in photodynamic therapy (PDT) in HeLa cells. This work revealed that GdIII complexes of “bioinspired” β‐modified porpholactones are efficient NIR photosensitizers and form a chemical basis to construct appealing photocatalysts and theranostic agents based on lanthanides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号