首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel green hydrophilic levofloxacin imprinted polymer was presented via one‐step polymerization in water using ionic liquid 1,6‐hexa‐3,3′‐bis‐1‐vinylimidazolium bromine with multiple hydrophilic groups and 2‐hydroxyethyl methacrylate as a co‐functional monomer. Adsorption experiment revealed that the ionic liquid significantly improved the water compatible of imprinted polymer, and the excellent recognition of molecularly imprinted polymer for levofloxacin in water corresponds to the synergetic effect of H‐bonding and the electrostatic and π–π interactions between the levofloxacin and co‐functional monomer. Furthermore, the adsorption process of the imprinted material towards levofloxacin fitted the Langmuir model, and the maximum binding amount of levofloxacin onto the imprinted and corresponding non‐imprinted polymer were 16.45 and 6.82 mg/g at 25°C, respectively. After optimizing the parameters affecting solid phase extraction performance, an enrichment and determination system was achieved to separate and detect levofloxacin from water and sediment samples with recoveries that ranged from 83.67 to 101.33% and relative standard deviation of less than 5.59%.  相似文献   

2.
A method of reversed‐phase ion‐pair solid‐phase extraction combined with ion chromatography for determination of pyrrolidinium ionic liquid cations (N‐methyl‐N‐ethyl pyrrolidinium, N‐methyl‐N‐propyl pyrrolidinium, and N‐methyl‐N‐butyl pyrrolidinium) in water samples was developed in this study. First, ion‐pair reagent sodium heptanesulfonate was added to the water samples after static, centrifugation and filteration. Then, pyrrolidinium cations in the samples were enriched and purified by a reversed‐phase solid‐phase extraction column, and eluted from the column with methanol aqueous solution as eluent. Finally, the eluate collected was analyzed by ion chromatography. The separation and direct conductivity detection of these pyrrolidinium cations by ion‐exchange column using 1.0 mM methanesulfonic acid (in water)/acetonitrile (97:3, v:v) as mobile phase was achieved within 10 min. By using this method, pyrrolidinium cations in Songhua River and Hulan River were successfully extracted with the recoveries ranging from 74.2 to 97.1% and the enrichment factor assessed as 60. Pyrrolidinium cations with the concentration of 0.001?0.03 mg/L can be enriched and detected in the water samples. The developed method for the determination of pyrrolidinium ionic liquid cations in water samples is simple and reliable, which provides a reference for the study of the potential impact of ionic liquids on the environment.  相似文献   

3.
l ‐Kynurenine is an endogenous metabolite generated by the catabolic pathway of l ‐tryptophan and it could be a potential biomarker to test the efficacy of several checkpoint inhibitors that have already reached the clinical trials in the antitumor therapy. Thus, a molecularly imprinted polymer specific for the recognition of this metabolite was synthesized and used as innovative system in solid‐phase extraction technique for the specific extraction and quantification of l ‐kynurenine in human urine. The off‐line system was firstly tested on l ‐kynurenine standard solutions, allowing recoveries up to 97.7% (relative standard deviation = 2.2%) and then applied to fortified and deproteinated human urine samples, where a recovery of 84.1% (relative standard deviation = 3.1%) was obtained. The method was validated and it revealed a good linearity in the range of 0.157–20 μg/mL (r= 0.9992). The optimized procedure demonstrated a good feasibility on biological samples, allowing a ready quantification of l ‐kynurenine in the human urine, where the metabolite was found at a very low concentration (0.80 μg/mL). The extraction system developed could attract attention of pharmaceutical industries for l ‐kynurenine production as potential drug in the treatment of autoimmune disorders through its extraction and purification from biological matrixes.  相似文献   

4.
Molecularly imprinted polymers for strobilurin fungicides were prepared by precipitation polymerization employing azoxystrobin as template molecular together with methacrylic acid monomer and trimethylolpropane triacrylate cross‐linker. Morphological characterization showed molecularly imprinted polymers were uniform spherical particles with about 0.2 μm in diameter, while the morphologies of nonimprinted polymers were irregular bulk. The equilibrium binding and selective experiments proved that molecularly imprinted polymers possessed a higher affinity toward four fungicides compared to nonimprinted polymers and heterogeneous binding sites were found in the molecularly imprinted polymers. Molecularly imprinted solid‐phase extraction conditions, including sample loading solvents, selective washing, and elution solvents, were carefully optimized. The developed method showed good recoveries (70.0–114.0%) with relative standard deviations in range of 1.0–9.8% (n  =  3) for samples (cucumber and peach) spiked at three different levels (10, 50, and 100 μg/ kg). The detection limit (signal/noise = 3) ranged from 0.01 to 0.08 μg/kg. The results demonstrated good potential use of this convenient and highly efficient method for determining trace strobilurin fungicides in agricultural products.  相似文献   

5.
A method based on molecular crowding and ionic liquids as reaction solvents has been used for the synthesis of molecularly imprinted polymers. Levofloxacin was selected as the template, polymethyl methacrylate was the molecular crowding agent, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate (ionic liquid) was selected as the reaction solvent and porogen. The optimized proportion for the mixed porogen was dimethyl sulfoxide/ionic liquid/polymethyl methacrylate 1:1.6:5 in chloroform (150 mg mL?1). The morphology and chemical composition of levofloxacin imprinted polymers were assessed by scanning electron microscopy and Fourier transform infrared spectroscopy. The absorption experiments demonstrated that the levofloxacin imprinted polymers possess high selective recognition property to levofloxacin and analogs, including enrofloxacin, ciprofloxacin and gatifloxacin, which all belong to fluoroquinolones. An extraction method using levofloxacin imprinted polymers as sorbent followed by high‐performance liquid chromatography analysis was optimized for the determination of four fluoroquinolones in milk and lake water samples. Under the optimized conditions, good linearity was observed in a range of 5–1000 ng g?1 with the limit of detection between 0.3 and 0.5 ng g?1 for the four fluoroquinolones. The recoveries at three spiked levels ranged 82.4–98.3% with the relative standard deviation ≤4.9.  相似文献   

6.
7.
The aim of this work was to evaluate the use of a molecularly imprinted polymer as a selective solid‐phase extraction sorbent for the clean‐up and pre‐concentration of patulin from apple‐based food products. Ultra high pressure liquid chromatography coupled to ultraviolet absorbance detection was used for the analysis of patulin. The molecularly imprinted polymer was applied, for the first time, to the determination of patulin in apple juice, puree and jam samples spiked within the maximum levels specified by the European Commission No. 1881/2006. High recoveries (>77%) were obtained. The method was validated and found to be linear in the range 2–100 μg/kg with correlation coefficients greater than 0.965 and repeatability relative standard deviation below 11% in all cases. Compared with dispersive solid‐phase extraction (QuEChERS method) and octadecyl sorbent, the molecularly imprinted polymer showed higher recoveries and selectivity for patulin. The application of Affinisep molecularly imprinted polymer as a selective sorbent material for detection of patulin fulfilled the method performance criteria required by the Commission Regulation No. 401/2006, demonstrating the suitability of the technique for the control of patulin at low ppb levels in different apple‐based foods such as juice, puree and jam samples.  相似文献   

8.
We describe novel cinnamic acid polydopamine‐coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi‐walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high‐performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid‐phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4–115.0% for cinnamic acid, 89.4–103.0% for ferulic acid and 86.6–96.0% for caffeic acid.  相似文献   

9.
We describe a stoichiometric approach to the synthesis of molecularly imprinted polymers specific for auramine O. Using the stoichiometric interaction in molecular imprinting, no excess of binding sites is necessary and binding sites are only located inside the imprinted cavities. The free base of the template was obtained to facilitate the interaction with the monomers. Itaconic acid was selected as the functional monomer, and stoichiometric ratio of the interaction with the free base was investigated. The molecularly imprinted polymer preparation conditions such as cross‐linker, molar ratio, porogen were optimized as divinylbenzene, 1:2:20 and chloroform/N,N‐dimethylformamide, respectively. Under the optimum conditions, a good imprinting effect and very high selectivity were achieved. A solid‐phase extraction method was developed using the molecularly imprinted polymers as a sorbent and extraction procedure was optimized. The solid‐phase extraction method showed a high extraction recovery for auramine O in its hydrochloride form and free form compared to its analogues. The results strongly indicated that stoichiometric imprinting is an efficient method for development of high selectivity molecularly imprinted polymers for auramine O.  相似文献   

10.
In this work, a novel surface molecularly imprinted polymer with high adsorption capacity, high adsorption rate, and high selectivity for fluoroquinolones was prepared on the surface of UiO‐66‐NH2, which is a kind of metal‐organic framework. The surface morphology and adsorption properties of this molecularly imprinted polymer were investigated. The maximum adsorption capacity was 99.19 mg/g, and adsorption equilibrium was achieved within 65 s. Combined with reversed‐phase high‐performance liquid chromatography, the molecularly imprinted polymer was used to selectively enrich, separate and analyze fluoroquinolones present in lake water. The results showed that the recoveries of the four fluoroquinolones were 92.6–100.5%, and the relative standard deviations were 2.9–6.4% (n = 3). The novel molecularly imprinted polymer is an excellent adsorbent and has broad application prospects in the enrichment and separation of trace analytes in complex samples.  相似文献   

11.
This research highlights the application of highly efficient molecularly imprinted solid‐phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine‐imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross‐linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid‐phase extraction sorbents for the selective cleanup of melamine. An off‐line molecularly imprinted solid‐phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high‐performance liquid chromatography analysis. Optimum molecularly imprinted solid‐phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6–96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid‐phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre‐treatment of melamine in aquaculture feed samples.  相似文献   

12.
A new type of molecularly imprinted ionic liquid magnetic microspheres was synthesized by aqueous suspension polymerization, using 4,4′‐dichlorobenzhydrol as a dummy template, and 1‐allyl‐3‐ethylimidazolium hexafluorophosphate and methacrylic acid as co‐functional monomers. The results of morphology and magnetic property evaluation of the obtained microspheres demonstrated that it was monodispersed spherical, possessed a rough surface, and an outstanding magnetic properties. Binding experiments revealed that it had a substantial adsorption capacity and strong recognition ability to organochlorine pesticides (OCPs) in aqueous solution. Then the microspheres were applied as an adsorbent of magnetic dispersive solid‐phase extraction for the selective recognition and rapid determination of OCPs in environmental water. Under the optimum conditions, good linearity of the three types of OCPs (dicofol, tetradifon, and p,p′‐dichlorodiphenyldichloroethane) was achieved in the range of 1.0–100 ng/mL (r ≥ 0.9994). The recoveries at three spiking levels ranged from 82.6 to 100.4% with the RSDs less than 6.9%.  相似文献   

13.
A simple, sensitive, and selective molecularly imprinted solid‐phase extraction and spectrophotometric method has been developed for the clean‐up and preconcentration of indapamide from human urine. Molecularly imprinted polymers were prepared by a non‐covalent imprinting approach using indapamide as a template molecule, 2‐(trifluoromethyl) acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, N,N‐azobisisobutyronitrile as a thermal initiator and acetonitrile as a porogenic solvent. A non‐imprinted polymer was also prepared in the same way, but in the absence of template. Molecularly imprinted polymer and non‐imprinted polymer sorbents were dry‐packed into solid‐phase extraction cartridges. Eluates from cartridges were analyzed using a spectrophotometer for the determination of indapamide by referring to the calibration curve in the range 0.14–1.50 μg/mL. Preconcentration factor, limit of detection, and limit of quantification were 16.30, 0.025 μg/mL, and 0.075 μg/mL, respectively. A relatively high imprinting factor (9.3) was also achieved and recovery values for the indapamide spiked into human urine were in the range of 80.1–81.2%. In addition, relatively low within‐day (0.17–0.42%) and between‐day (1.1–1.4%) precision values were obtained as well. The proposed molecularly imprinted solid‐phase extraction and spectrophotometric method was successfully applied to selective extraction, preconcentration, and determination of indapamide from human urine samples.  相似文献   

14.
Three types of molecularly imprinted solid‐phase microextraction fibers were fabricated through sol‐gel method using diazinon, parathion‐methyl, and isocarbophos as templates, respectively, and assembled together to construct a multifiber for analysis of organophosphorus pesticides in complex matrices. The multifiber provided large extraction capacity and high imprinting factor up to 3.89. In contrast, the imprinting factor of a single fiber was around 1.6, and the multi‐template imprinted coating showed no selectivity. The multifiber was applied to analyze pesticides in fruits and vegetables. The limits of detection, which ranged from 0.0052 to 0.23 µg/kg, were lower than those obtained by a single molecularly imprinted fiber, and much lower than those reported by other methods. The recoveries of five analytes in spiked apple, cucumber, Chinese cabbage, and cherry tomato samples were 75.1–123.2%. The study shows that the molecularly imprinted multifiber could achieve simultaneous selective extraction and sensitive determination of multiple targets in complex matrices for high‐throughput analysis.  相似文献   

15.
Advanced SPE with molecularly imprinted polymers (MIP) was used in this study. A noncovalent imprinting approach was applied to separate 17β‐estradiol, estriol, and estrone from water samples. Polymer material was prepared by bulk polymerization with methacrylic acid as a functional monomer, divinylbenzene and ethyleneglycol dimethacrylate as crosslinkers, and acetonitrile, acetonitrile/toluene (3:1, v/v) or isooctane/toluene (1:99, v/v) as a porogen. We also prepared an MIP film on a silica gel surface with methacrylic acid and ethyleneglycol dimethacrylate as monomers and acetonitrile as a solvent. Qualitative and quantitative hormone analyses were carried out by HPLC with various detection techniques, including UV/visible spectroscopic detection (diode array detection) and electrochemical detection (CoulArray). The results of the study indicate that MIP technology is an excellent method for the quality control of estrogens in environmental analyses with a low quantification limit for 17β‐estradiol of around 26 (diode array detection) and 0.25 ng/mL (electrochemical detection). The proposed method was found to be suitable for routine determinations of the analyzed compound in environmental laboratories.  相似文献   

16.
The objective of this article was to design the selective molecularly imprinted sorbent dedicated to the solid‐phase extraction of S‐pramipexole from the complex matrix such as human urine. For that purpose, S‐2,6‐diamino‐4,5,6,7‐tetrahydrobenzothiazole was used as the template acting as the structural analog of S‐pramipexole and five various monomers were employed in the presence of ethylene glycol dimethacrylate to produce molecularly imprinted polymers. The binding capabilities of resulted polymers revealed that the highest imprinting effect was noted for polymer prepared from the itaconic acid. The comprehensive analysis of morphology and the characterization of binding sites showed not only negligible differences in the extension of surfaces of imprinted and nonimprinted polymers but also higher heterogeneity of binding sites in the imprinted material. Comprehensive optimization of the molecularly imprinted solid‐phase extraction allowed to select the most appropriate solvents for loading, washing, and elution steps. Subsequent optimization of mass of sorbent and volumes of solvents allowed to achieve satisfactory total recoveries of S‐pramipexole from the model multicomponent real sample of human urine that equals to 91.8 ± 3.2% for imprinted sorbent with comparison to only 37.1 ± 1.1% for Oasis MCX.  相似文献   

17.
A novel mixed hemimicelles and magnetic dispersive solid‐phase extraction method based on long‐chain ionic liquids for the extraction of five fluorescent whitening agents was established. The factors influenced on extraction efficiency were investigated. Under the optimal conditions, namely, the pH of sample solution at 8.0, the concentration of long chain ionic liquid at 0.5 mmol/L, the amount of Fe3O4 nanoparticle at 12 mg, extraction time at 10 min, pH 6.0 of methanol as eluent, and the desorption time at 1 min, satisfactory results were obtained. Wide linear ranges (0.02–10 ng/mL) and good linearity were attained (0.9997–0.9999). The intraday and interday RSDs were 2.1–8.3%. Limits of detection were 0.004–0.01 ng/mL, which were decreased by almost an order of magnitude compared to direct detection without extraction. The present method was applied to extract the fluorescent whitening agents in two kinds of paper samples, obtaining satisfactory results. All showed results illustrated that the detection sensitivity was improved and the proposed method was a good choice for the enriching and monitoring of trace fluorescent whitening agents.  相似文献   

18.
A novel core–shell magnetic nano‐adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro‐solid‐phase extraction followed by determination of rhodamine 6G using high‐performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m‐aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (34) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid‐base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano‐adsorbent was successfully applied to dispersive micro‐solid‐phase extraction coupled to high‐performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0–99.1, 89.5–92.7, and 86.9–105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%.  相似文献   

19.
Matrix solid‐phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High‐performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid‐phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid‐phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion‐pairing agent (NH4PF6), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3–13.4 μg/kg.  相似文献   

20.
Cotton fiber is a biodegradable material that possesses properties such as high specific area, adjustable shape, and hygroscopicity. In this work, organic polymer was directly in situ grown on the surface of cotton thread and packed into a poly(ether ether ketone) tube for online in‐tube solid‐phase microextraction. The novel strategy solves the problems like high backpressure and tedious optimization process of normal monolithic polymer‐based in‐tube solid‐phase microextraction capillary. The quaternary ammonium typed ionic liquid of 1‐allyl‐methylimidazolium chloride, 4‐vinylbiphenyl, and ethylene dimethacrylate were co‐polymerized and in situ grown on the surface of cotton thread as extraction phase. The solid‐phase microextraction tube showed excellent performance for the extraction of three nonsteroidal anti‐inflammatory drugs including ketoprofen, naproxen, and flurbiprofen due to the strong ion exchange and hydrophobic interactions. After online coupling with a high‐performance liquid chromatography system by six‐port valve, the method was applied for the quantitative analysis of nonsteroidal anti‐inflammatory drugs in human plasma samples showing good enrichment performance (enrichment factor between 263 and 279), high sensitivity, good linearity, and good reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号