首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kinetically-stabilized nitrogen-doped triangulene cation derivative has been synthesized and isolated as the stable diradical with a triplet ground state that exhibits near-infrared emission. As was the case for a triangulene derivative we previously synthesized, the triplet ground state with a large singlet-triplet energy gap was experimentally confirmed by magnetic measurements. In contrast to the triangulene derivative, the nitrogen-doped triangulene cation derivative is highly stable even in solution under air and exhibits near-infrared absorption and emission because the alternancy symmetry of triangulene is broken by the nitrogen cation. Breaking the alternancy symmetry of triplet alternant hydrocarbon diradicals by a nitrogen cation would therefore be an effective strategy to create stable diradicals possessing magnetic properties similar to the parent hydrocarbons but with different electrochemical and photophysical properties.  相似文献   

2.
Triangulene and its higher homologues are a class of zigzag‐edged triangular graphene molecules (ZTGMs) with high‐spin ground states. These open‐shell molecules are predicted to host ferromagnetically coupled edge states with net spin values scaling with molecular size and are therefore considered promising candidates for future molecular spintronics applications. Unfortunately, the synthesis of unsubstituted [n]triangulenes and the direct observation of their edge states have been a long‐standing challenge due to a high reactivity towards oxygen. However, recent advances in precursor design enabled the on‐surface synthesis and characterization of unsubstituted [3]‐, [4]‐, and [5]triangulene. In this Minireview, we will highlight key aspects of this rapidly developing field, ranging from the principles of precursor design to synthetic strategies and characterization of a homologous series of triangulene molecules synthesized on‐surface. We will also discuss challenges and future directions.  相似文献   

3.
A transition‐metal‐free (5+1) cycloaddition of aryl‐substituted vinylcyclopropanes (VCPs) and hydrosilanes to afford silacyclohexanes is reported. Catalytic amounts of the trityl cation initiate the reaction by hydride abstraction from the hydrosilane, and further progress of the reaction is maintained by self‐regeneration of the silylium ions. The new reaction involves a [1,2] migration of an aryl group, eventually furnishing 4‐ rather than 3‐aryl‐substituted silacyclohexane derivatives as major products. Various control experiments and quantum‐chemical calculations support a mechanistic picture where a silylium ion intramolecularly stabilized by a cyclopropane ring can either undergo a kinetically favored concerted [1,2] aryl migration/ring expansion or engage in a cyclopropane‐to‐cyclopropane rearrangement.  相似文献   

4.
Triangulene and its higher homologues are a class of zigzag-edged triangular graphene molecules (ZTGMs) with high-spin ground states. These open-shell molecules are predicted to host ferromagnetically coupled edge states with net spin values scaling with molecular size and are therefore considered promising candidates for future molecular spintronics applications. Unfortunately, the synthesis of unsubstituted [n]triangulenes and the direct observation of their edge states have been a long-standing challenge due to a high reactivity towards oxygen. However, recent advances in precursor design enabled the on-surface synthesis and characterization of unsubstituted [3]-, [4]-, and [5]triangulene. In this Minireview, we will highlight key aspects of this rapidly developing field, ranging from the principles of precursor design to synthetic strategies and characterization of a homologous series of triangulene molecules synthesized on-surface. We will also discuss challenges and future directions.  相似文献   

5.
Molecules which change their structures significantly and reversibly upon an oxidation or reduction process have potential as future components of smart materials. A prerequisite for such an application is that the molecules should undergo the redox‐coupled transformation within a reasonable electrochemical window and lock into stable redox states. Sodium phosphaethynolate reacts with two equivalents of dicyclohexylcarbodiimide (DCC) to yield an anionic, imino‐functionalized 1,3,5‐diazaphosphinane [ 3 a ]?. The oxidation of this anion with elemental iodine causes an intramolecular rearrangement reaction to give a bicyclic 1,3,2‐diazaphospholenium cation [ 6 ]+. This umpolung of electronic properties from non‐aromatic to highly aromatic is reversible, and the cation [ 6 ] + is reduced with elemental magnesium to reform the 1,3,5‐diazaphosphinanide anion [ 3 a ]?. Theoretical calculations suggest that phosphinidene species are involved in the rearrangement processes.  相似文献   

6.
(1,3‐bis[2,6‐bis[di(4‐tert‐butylphenyl)methyl]‐4‐methylphenyl]imidazol‐2‐ylidene)CuOPh [(IPr**)CuOPh] reacts with poly(methylhydrosiloxane) as the hydride donor to afford the monomeric (IPr**)CuH complex, which was spectroscopically characterized. The latter is in equilibrium in solution with [(IPr**)CuH]2, the dimer being exclusively present in the solid state. These results support the hypothesis that copper hydride aggregates dissociate in solution. In contrast, addition of pinacolborane to [(IPr**)AgOPh] at −40 °C allows the isolation of the monomeric (IPr**)AgH complex, which was crystallographically characterized.  相似文献   

7.
The metalated ylide YNa [Y=(Ph3PCSO2Tol)] was employed as X,L‐donor ligand for the preparation of a series of boron cations. Treatment of the bis‐ylide functionalized borane Y2BH with different trityl salts or B(C6F5)3 for hydride abstraction readily results in the formation of the bis‐ylide functionalized boron cation [Y−B−Y]+ ( 2 ). The high donor capacity of the ylide ligands allowed the isolation of the cationic species and its characterization in solution as well as in solid state. DFT calculations demonstrate that the cation is efficiently stabilized through electrostatic effects as well as π‐donation from the ylide ligands, which results in its high stability. Despite the high stability of 2 [Y−B−Y]+ serves as viable source for the preparation of further borenium cations of type Y2B+←LB by addition of Lewis bases such as amines and amides. Primary and secondary amines react to tris(amino)boranes via N−H activation across the B−C bond.  相似文献   

8.
On treating di(tert-butyl)butadiyne with dimethylaluminum hydride under different reaction conditions two unprecedented organoelement compounds, containing cationic carbon atoms stable in solution at room temperature, were obtained. A vinyl cation (2) in which the cationic carbon atom is part of a C=C double bond was produced from 3 equiv of the hydride, whereas a large excess of the hydride yielded an aliphatic carbocation (3) by complete hydroalumination of all C-C multiple bonds. Each compound is zwitterionic with the hydride counterion effectively coordinated in a chelating manner by two strongly Lewis acidic aluminum atoms. In agreement with quantum-chemical calculations the C-H bond activation and the stabilization of the cationic species are further supported by a strong hyperconjugation with Al-C single bonds. This considerably diminishes the effective positive charge at the respective cationic carbon atoms.  相似文献   

9.
Silicon complexation of a [38]octaphyrin ( 1 ) was accomplished by reaction with an excess amount of MeSiCl3 in the presence of N,N‐diisopropylethylamine, thus giving an aromatic [38]octaphyrin bis(silicon) complex 2 . This complex was interconvertible with an antiaromatic [36]octaphyrin congener ( 3 ) by oxidation with MnO2 and reduction with NaBH4. Curiously, mild oxidation of 2 with ferrocenium hexafluorophosphate afforded a [37]octaphyrin bis(silicon) complex 4 as an stable radical cation that can be stored under ambient conditions in the solid state. Owing to the two NNNCC‐five‐coordinated Si atoms bearing trigonal bipyramidal geometry, these octaphyrin bis(silicon) complexes take on similar and rigid figure‐of‐eight structures with different consecutive numbers of conjugated π‐electrons (38, 37, and 36), and are all stable.  相似文献   

10.
This paper reports a novel methodology for the conformational analysis of [2]rotaxanes. It combines NMR spectroscopic (COSY, NOESY and the recently reported paramagnetic line-broadening and suppression technique) and electrochemical techniques to enable a quantitative analysis of the co-conformations of interlocked molecules and the conformations of their components. This methodology was used to study a model [2]rotaxane in solution. This [2]rotaxane consists of an axle that incorporates an electron-poor, doubly positively charged viologen that threads an electron-rich crown ether. It has been shown that the axle of the [2]rotaxane in its dicationic state adopts a folded conformation in solution and the crown ether is localised at the viologen moiety. Following a one-electron reduction of viologen, the paramagnetic radical cation of the [2]rotaxane retains its folded conformation in solution. The data also demonstrate that in the radical cation the crown ether remains localised at the viologen, despite its reduced affinity for the singly reduced viologen. The combined quantitative NMR spectroscopic and electrochemical characterisation of the electromechanical function of the model [2]rotaxane in solution provides an important reference point for the study of switching in structurally related bistable [2]rotaxanes, which is the subject of the second part of this work.  相似文献   

11.
The effects of the type and content of comonomers on the rheological properties of acrylic copolymers in 1‐butyl‐3‐methylimidazolium chloride ([BMIM]Cl) were explored. According to the de Gennes scaling law for solution, comparison of intrinsic viscosity and scaling analysis of the exponent in the specific viscosity‐ and relaxation time‐concentration power law indicated that solution of both polyacrylonitrile (PAN) homo‐polymer and copolymer poly(acrylonitrile‐co‐methyl acrylate) (poly(AN‐co‐MA)) in [BMIM]Cl behave in the same manner as neutral polymer in a θ‐solvent. However, [BMIM]Cl acts as a more good solvent for poly(acrylonitrile‐co‐acrylamide) (poly(AN‐co‐AM)). The dissolution and unique rheological behavior of such solutions have been attributed to the interactions between copolymer chains and [BMIM]Cl. The interactions between nitrile group (?C≡N) and 1‐butyl‐3‐methylimidazolium cation ([BMIM]+) should interrupt and break the dipolar‐dipolar interactions of PAN resulting in the subsequent dissolution of the polymer in [BMIM]Cl. Such interactions between ?C≡N and [BMIM]+ ion are still dominated by the solvating ability of poly(AN‐co‐MA) in [BMIM]Cl, even though carbonyl group (C=O) in MA repeating unit could coordinate to cation of the ionic liquid. The salvation capacity of [BMIM]Cl for poly(AN‐co‐AM) can be evidently improved due to the extra hydrogen bond interactions between ?NH2 group of AM and anion of [BMIM]Cl. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The conjugate acids (PHCH+s) of P‐heterocyclic carbenes (PHCs) are prepared by formal [3+2] cycloaddition of a 1,3‐diphosphaallyl or 1,3‐phosphinophosphenium cation with various nitriles. The effect of the phosphorus substituent on the fate of the cyclization and on that of the counteranion and base in the subsequent deprotonation reaction are reported. Two PHCs that are indefinitely stable in the solid state are described. In solution, one of them, made from acetonitrile, undergoes a facile [3+2] cycloreversion, whereas the other, based on dimethyl cyanamide, is stable, presumably owing to its zwitterionic structure, which involves a tricoordinate pentavalent phosphorus atom. The reactivity of PHCs is strongly driven by the high electrophilicity of the phosphorus centers, as demonstrated by their reactivity with water and benzaldehyde. Although both PHCs reported in this paper are direct analogues of the least‐basic NHCs, their basicity is comparable to those of the more strongly basic NHCs (as determined by comparison of the carbonyl stretching frequencies of their corresponding cis‐[RhCl‐(CO)2(L)] complexes).  相似文献   

13.
Strategies for the synthesis of highly electrophilic AuI complexes from either hydride‐ or chloride‐containing precursors have been investigated by employing sterically encumbered Dipp‐substituted expanded‐ring NHCs (Dipp=2,6‐iPr2C6H3). Thus, complexes of the type (NHC)AuH have been synthesised (for NHC=6‐Dipp or 7‐Dipp) and shown to feature significantly more electron‐rich hydrides than those based on ancillary imidazolylidene donors. This finding is consistent with the stronger σ‐donor character of these NHCs, and allows for protonation of the hydride ligand. Such chemistry leads to the loss of dihydrogen and to the trapping of the [(NHC)Au]+ fragment within a dinuclear gold cation containing a bridging hydride. Activation of the hydride ligand in (NHC)AuH by B(C6F5)3, by contrast, generates a species (at low temperatures) featuring a [HB(C6F5)3]? fragment with spectroscopic signatures similar to the “free” borate anion. Subsequent rearrangement involves B?C bond cleavage and aryl transfer to the carbophilic metal centre. Under halide abstraction conditions utilizing Na[BArf4] (Arf=C6H3(CF3)2‐3,5), systems of the type [(NHC)AuCl] (NHC=6‐Dipp or 7‐Dipp) generate dinuclear complexes [{(NHC)Au}2(μ‐Cl)]+ that are still electrophilic enough at gold to induce aryl abstraction from the [BArf4]? counterion.  相似文献   

14.
[reaction: see text] A novel oxidative photodehydrocyclization of indolinylphenylethenes to a polycyclic heteroaromatic cation with good yields was described. Starting from the trans derivative, the phototransformation is a multistep process. The process includes two photochemical reactions and a trans-cis isomerization reaction, followed by an 1-aza-1,3,5-hexatrienic electrocyclic reaction involving the formation of a C-N bond. The cyclized product gives the stable heteroaromatic cations from hydride elimination with oxygen from air or iodine.  相似文献   

15.
The alkylation of complexes 2 and 7 with Grignard reagents containing β‐hydrogen atoms is a process of considerable relevance for the understanding of C–H activation as well as C–C bond formation mediated by low‐valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis‐ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis‐alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14‐electron count, which has no less than four β‐H atoms but is nevertheless stable at low temperature against β‐hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C–H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution ( 15 ), whereas its structure in the solid state is more consistent with an η3‐allyl iron hydride rendition featuring an additional agostic interaction ( 14 ). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron‐mediated C–H activation cascade can be coaxed to induce a stereoselective C? C bond formation. The structures of all relevant new iron complexes in the solid state are presented.  相似文献   

16.
In electrospray ionization tandem mass spectrometry of protonated 1‐benzoylamines (1‐benzoylpiperadine, 1‐benzoylmorpholine, and 1‐benzoyl‐4‐methylpiperazine), the dominant fragmentation pathway was amide bond cleavage to form benzoyl cation and neutral amine. Meanwhile, in their fragmentations, an interesting loss of benzaldehyde (106 Da) was observed and identified to derive from hydride transfer reaction between the benzoyl cation and amine. A stepwise mechanism for loss of 106 Da (benzene and CO) could be excluded with the aid of deuterium labeling experiment. Theoretical calculations indicated that hydride transfers from amines (piperadine, morpholine, and 1‐methylpiperazine) to benzoyl cation were thermodynamically permitted, and 1‐methylpiperazine was the best hydride donor among the 3 amines. The mass spectrometric experimental results were consistent with the computational results. The relative abundance of the iminium cation (relative to the benzoyl cation) in the fragmentation of protonated 1‐benzoyl‐4‐methylpiperazine was higher than that in the fragmentation of the other 2 protonated 1‐benzoylamines. By comparing the fragmentations of protonated 1‐benzyl‐4‐methylpiperazine and protonated 1‐benzoyl‐4‐methylpiperazine and the energetics of their hydride transfer reactions, this study revealed that benzoyl cation was a hydride acceptor in the gas phase, but which was weaker than benzyl cation.  相似文献   

17.
The alkylation of complexes 2 and 7 with Grignard reagents containing β‐hydrogen atoms is a process of considerable relevance for the understanding of C–H activation as well as C–C bond formation mediated by low‐valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis‐ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis‐alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14‐electron count, which has no less than four β‐H atoms but is nevertheless stable at low temperature against β‐hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C–H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution ( 15 ), whereas its structure in the solid state is more consistent with an η3‐allyl iron hydride rendition featuring an additional agostic interaction ( 14 ). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron‐mediated C–H activation cascade can be coaxed to induce a stereoselective C C bond formation. The structures of all relevant new iron complexes in the solid state are presented.  相似文献   

18.
[Fe]‐hydrogenase is an efficient biological hydrogenation catalyst. Despite intense research, Fe complexes mimicking the active site of [Fe]‐hydrogenase have not achieved turnovers in hydrogenation reactions. Herein, we describe the design and development of a manganese(I) mimic of [Fe]‐hydrogenase. This complex exhibits the highest activity and broadest scope in catalytic hydrogenation among known mimics. Thanks to its biomimetic nature, the complex exhibits unique activity in the hydrogenation of compounds analogous to methenyl‐H4MPT+, the natural substrate of [Fe]‐hydrogenase. This activity enables asymmetric relay hydrogenation of benzoxazinones and benzoxazines, involving the hydrogenation of a chiral hydride transfer agent using our catalyst coupled to Lewis acid‐catalyzed hydride transfer from this agent to the substrates.  相似文献   

19.
The bromination of bicyclo[3.2.1]octa-2,6-diene (3) by NBS does not follow the familiar free-radical course but proceeds through the cyclopropylcarbinyl cation 7. 7 can be trapped by addition of small amounts of methanol. The bicyclo[3.2.1]octa-2,6-dien-4-yl radical is involved in the reduction of exo-6-bromotricyclo [3.2.1.02,7]oct-3-ene by tributyltin hydride.  相似文献   

20.
A stable cyclic (alkyl)(amino)carbene (CAAC) 1 inserts into the para‐CF bond of pentafluoropyridine, and after fluoride abstraction, the iminium‐pyridyl adduct [ 3 ]+ was isolated. A cyclic voltammetry study shows a reversible three‐state redox system involving [ 3 ]+, [ 3 ] ? , and [ 3 ] ? . The CAAC‐pyridyl radical [ 3 ] ? , obtained by reduction of [ 3 ]+ with magnesium, has been spectroscopically and crystallographically characterized. In contrast to the lack of π communication between the CAAC and the pyridine units in cation [ 3 ]+, the unpaired electron of [ 3 ] ? is delocalized over an extended π system involving both heterocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号