首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels.  相似文献   

2.
Hyaluronic acid (HA) is a high‐molecular‐weight glycosaminoglycan and extracellular matrix component that promotes cell proliferation. This study aimed to evaluate the effects of HA on alkali‐injured human corneal epithelial cells in vitro, and to elucidate the mechanisms by which HA mediates corneal cell protection. A human corneal epithelial cell line (HCE‐2) was treated with sodium hydroxide before incubation with low‐molecular‐weight HA (LMW‐HA, 127 kDa) or high‐molecular‐weight HA (HMW‐HA, 1525 kDa). A global proteomic analysis was then performed. Our data indicated that HA treatment protects corneal epithelial cells from alkali injury, and that the molecular weight of HA is a crucial factor in determining its effects. Only HMW‐HA reduced NaOH‐induced cytotoxic effects in corneal cells significantly and increased their migratory and wound healing ability. Results from 2D‐DIGE and MALDI‐TOF/TOF MS analyses indicated that HMW‐HA modulates biosynthetic pathways, cell migration, cell outgrowth, and protein degradation to stimulate wound healing and prevent cell death. To our knowledge, our study is the first to report the possible mechanisms by which HMW‐HA promotes repair in alkali‐injured human corneal epithelial cells.  相似文献   

3.
Hyaluronan (HA) is a natural polysaccharides which has no sulfated group but high molecular weight in comparison with other glycosaminoglycans (GAGs). Previously it has been cleared up that the cell function of human keratinocytes is affected by S‐HA (HA substituted with sulfated groups). Most biomedical materials contact with blood components, proteins, cells, etc. In this study, the interaction between S‐HA and blood components is discussed, that is, plasma proteins. And the application of S‐HA for new analytical and separation method of some proteins is pointed out. None of the proteins were adsorbed to HA. Fibronectin and fibinogen were adsorbed to S‐HA, but immunoglobulin‐G and insulin were not adsorbed to it as well as heparin. However, albumin could interact only with heparin, and it did not interact with S‐HA. Furthermore S‐HA adsorbed the plasma proteins that did not adsorb to heparin. It is clear that S‐HA showed different interaction with the plasma proteins in comparison with natural sulfated polysaccharides. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Hyaluronan (HA) is one of the polysaccharides that is found widely in connective tissue of mammals, and it has no sulfate group and high molecular weight in comparison with other glycosaminoglycans. Glycosaminoglycans are deeply concerned with the manifestation of biofunctions not only by their physical properties but also by physiological ones. In this study, sulfated HA (S‐HA) with various degrees of sulfate substitution and high molecular weight will be synthesized in order to give HA new biological functions. Moreover, the effect of HA and S‐HA on cell proliferation of human epidermal keratinocytes in vitro will be discussed. HA did not affect lag phase, but growth rate (metabolic turnover) of the cell in a logarithmic growth phase which was controlled by the molecular weight of HA. S‐HA stimulated the cell proliferation in the low concentration region under 1 μg/ml. While it inhibited the cell proliferation in the high concentration region over 10 μg/ml. It strongly suppressed the cell proliferation in the logarithmic growth metaphase. These facts were considered to be caused by the change of the cell‐matrix and/or cell–cell interactions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
《先进技术聚合物》2018,29(10):2593-2600
Effective endosomal escape is required for practical application of nucleic acid therapeutics. In this study, we prepared siRNA micelleplexes with photothermally triggered endosomal escape and improved gene silencing activity in vitro. The micelleplexes were prepared from cholesterol‐modified and CXCR4‐inhibiting poly(amido amine)s (PAMD‐Ch). Near‐infrared dye IR780 was encapsulated in cationic PMAD‐Ch micelles, which then were used to form IR780 micelleplexes with siRNA. The micelleplexes displayed improved gene silencing efficiency upon laser irradiation, which was attributed to enhanced endosomal escape because of the photothermal effects of the encapsulated IR780. The IR780 micelleplexes retained the CXCR4 antagonism and inhibition of cancer cell invasion of the parent PAMD. Overall, this study validates codelivery of IR780 in siRNA micelleplexes as promising photothermally controlled siRNA delivery approach.  相似文献   

6.
Immunosuppressive M2 macrophages govern the immunophathogenic micromilieu in many severe diseases including cancer or fibrosis, thus, their re‐polarization through RNA interference is a promising concept to support combinatorial therapies. For targeted siRNA delivery, however, safe and stable carriers are required that manage cell specific transport to M2 macrophages. Here, siRNA‐loaded cationic nanogels are reported with α‐mannosyl decorated surfaces that target and modify M2 macrophages selectively. Via amphiphilic precursor block copolymers bearing one single α‐mannosyl moiety at their chain end mannosylated cationic nanohydrogel particles (ManNP) were obtained of 20 nm diameter determined by dynamic light scattering and cryogenic electron transmission microscopy. α‐Mannosyl surface modification is confirmed by agglutination with concanavalin A. SiRNA‐loaded ManNP preferentially targets the overexpressed mannose receptor CD206 on M2 macrophages, as shown by in vitro cell uptake studies in M2 polarized primary macrophages. This specificity is confirmed, since ManNP uptake could be reduced by blocking of CD206 with mannan. Effective ManNP‐guided siRNA delivery is confirmed by sequence‐specific gene knockdown of CSF‐1R in M2‐type macrophages exclusively, while the expression levels in M1‐polarized macrophages is not affected. In conclusion, α‐mannosyl‐functionalized ManNPs are promising universal siRNA carriers for targeted immunomodulatory treatment of immunosuppressive macrophages.  相似文献   

7.
Effective and low toxicity delivery of siRNA is of great importance for clinical gene therapy. Herein, self‐assembled DNA nanoparticles (NPs) based on rolling circle amplification (RCA) with a small interfering RNA (siRNA) payload were successfully developed as a facile and efficient siRNA delivery strategy. This intracellular gene silencing strategy exhibits various advantages including low toxicity, high efficiency, and good stability. The synthesized DNA NPs serve as siRNA carriers, protecting the siRNA against nuclease degradation. We demonstrate that the obtained self‐assembled siRNA/NP/PEI system can successfully deliver enhanced green fluorescent protein (EGFP)‐siRNA into HeLa cells, realizing the same EGFP knockdown efficiency with less toxicity as that of commercial Lipofectamine 2000.  相似文献   

8.
Small interfering RNA(siRNA) has been proved to be a powerful tool for silencing target gene in cells, raising the possibility that siRNA can be employed as a therapy for treating cancers and other genetic diseases. However, siRNA transfection has the limitation due to the difficulty in the delivery of siRNA to target cells and tissues. To explore an efficient biocompatible siRNA delivery system, cationic diphenylalanine vesicles(CDPVs) were constructed to transfer survivin siRNA to human ovarian cancer cells. The morphology of CDPVs was characterized by scanning electron microscopy(SEM) and the distribution of survivin siRNA was characterized by confocal laser scanning microscopy, which reveal that diphenylalanine and the survivin siRNA were successfully co-delivered. After co-incubation for 48 h, the CDPVs/siRNA exhibited enhanced tumor cell growth inhabitation and apoptosis inducted in human SK-OV-3 ovarian carcinoma cells. Overall, CDPVs is an efficient siRNA delivery system and has a promising prospect for cancer therapy.  相似文献   

9.
Owing to the biodegradability and good biocompatibility polycarbonates show the versatile class of applications in biomedical fields. While their poor functional ability seriously limited the development of functional polycarbonates. Herein, a new Br‐containing cyclic carbonate (MTC‐Br) and a polycarbonate atom transfer radical polymerization (ATRP) macro‐initiator (PEG‐PMTC‐Br) is synthesized. Then, by initiating the side‐chain ATRP of 2‐(dimethyl amino)ethyl methacrylate (DMAEMA) on PEG‐PMTC‐Br, a series of comb‐like amphiphilic cationic polycarbonates, PEG‐b‐(PMTC‐g‐PDMAEMA) (GMDMs), with different lengths of cationic branches are successfully prepared. All these poly(ethylene glycol)‐b‐(poly((5‐methyl‐2‐oxo‐1,3‐dioxane‐5‐yl) methyl 2‐bromo‐2‐methylpropanoate/1,3‐dioxane‐2‐one)‐g‐poly(2‐dimethyl aminoethyl methacrylate) (GMDMs) self‐assembled nanoparticles (NPs) (≈180 nm, +40 mV) can well bind siRNA to form GMDM/siRNA NPs. The gene silence efficiency of GMDM/siRNA high to 80%, which is even higher than the commercial transfection reagent lipo2000 (76%). But GMDM/siRNA shows lower cell uptake than lipo2000. So, the high gene silence ability of GMDM/siRNA NPs can be attributed to the strong intracellular siRNA trafficking capacity. Therefore, GMDM NPs are potential siRNA vectors and the successful preparation of comb‐like polycarbonates also provides a facile way for diverse side‐chain functional polycarbonates, expanding the application of polycarbonates.  相似文献   

10.
There is a clear need for novel in vitro models, especially for neuronal applications. Development of in vitro models is a multiparameter task consisting of cell‐, biomaterial‐, and environment‐related parameters. Here, three different human origin neuronal cell sources are studied and cultured in various hydrogel 3D scaffolds. For the efficient evaluation of complex results, an indexing method for data is developed and used in principal component analysis (PCA). It is found that no single hydrogel is superior to other hydrogels, and collagen I (Col1) and hyaluronan–poly(vinyl alcohol) (HA1‐PVA) gels are combined into an interpenetrating network (IPN) hydrogel. The IPN gel combines cell supportiveness of the collagen gel and stability of the HA1‐PVA gel. Moreover, cell adhesion is studied in particular and it is found that adhesion of neurons differs from that observed for fibroblasts. In conclusion, the HA1‐PVA‐col1 hydrogel is a suitable scaffold for neuronal cells and supports adhesion formation in 3D.  相似文献   

11.
Polyelectrolyte multilayers assembled from hyaluronic acid (HA) and poly‐l ‐lysine (PLL) are most widely studied showing excellent reservoir characteristics to host molecules of diverse nature; however, thick (HA/PLL)n films are often found cell repellent. By a systematic study of the adhesion and proliferation of various cells as a function of bilayer number “n” a correlation with the mechanical and chemical properties of films is developed. The following cell lines have been studied: mouse 3T3 and L929 fibroblasts, human foreskin primary fibroblasts VH‐Fib, human embryonic kidney HEK‐293, human bone cell line U‐2‐OS, Chinese hamster ovary CHO‐K and mouse embryonic stem cells. All cells adhere and spread well in a narrow “cell‐friendly” window identify in the range of n = 12–15. At n < 12, the film is inhomogeneous and at n > 15, the film is cell repellent for all cell lines. Cellular adhesion correlates with the mechanical properties of the films showing that softer films at higher “n” number exhibiting a significant decrease of the Young's modulus below 100 kPa are weakly adherent to cells. This trend cannot be reversed even by coating a strong cell‐adhesive protein fibronectin onto the film. This indicates that mechanical cues plays a major role for cell behavior, also in respect to biochemical ones.  相似文献   

12.
Gene therapy has immense potential as a therapeutic approach to serious diseases. However, efficient delivery and real‐time tracking of gene therapeutic agents have not been solved well for successful gene‐based therapeutics. Herein we present a versatile gene‐delivery strategy for efficient and visualized delivery of therapeutic genes into the targeted nucleus. We developed an integrin‐targeted, cell‐permeable, and nucleocytoplasmic trafficking peptide‐conjugated AIEgen named TDNCP for the efficient and sequential targeted delivery of an antisense single‐stranded DNA oligonucleotide (ASO) and tracking of the delivery process into the nucleus. As compared with TDNCP/siRNA‐NPs (siRNA functions mainly in the cytoplasm), TDNCP/ASO‐NPs (ASO functions mainly in the nucleus) exhibited a better interference effect, which further indicates that TDNCP is a nucleus‐targeting vector. Moreover, TDNCP/ASO‐NPs showed a favorable tumor‐suppressive effect in vivo.  相似文献   

13.
siRNA delivery remains a major challenge in RNAi‐based therapy. Here, we report for the first time that an amphiphilic dendrimer is able to self‐assemble into adaptive supramolecular assemblies upon interaction with siRNA, and effectively delivers siRNAs to various cell lines, including human primary and stem cells, thereby outperforming the currently available nonviral vectors. In addition, this amphiphilic dendrimer is able to harness the advantageous features of both polymer and lipid vectors and hence promotes effective siRNA delivery. Our study demonstrates for the first time that dendrimer‐based adaptive supramolecular assemblies represent novel and versatile means for functional siRNA delivery, heralding a new age of dendrimer‐based self‐assembled drug delivery in biomedical applications.  相似文献   

14.
RNA interference (RNAi) mediated by small interfering RNA (siRNA) duplexes is a powerful therapeutic modality, but the translation of siRNAs from the bench into clinical application has been hampered by inefficient delivery in vivo. An innovative delivery strategy involves fusing siRNAs to a three-way junction (3WJ) motif derived from the phi29 bacteriophage prohead RNA (pRNA). Chimeric siRNA-3WJ molecules are presumed to enter the RNAi pathway through Dicer cleavage. Here, we fused siRNAs to the phi29 3WJ and two phylogenetically related 3WJs. We confirmed that the siRNA-3WJs are substrates for Dicer in vitro. However, our results reveal that siRNA-3WJs transfected into Dicer-deficient cell lines trigger potent gene silencing. Interestingly, siRNA-3WJs transfected into an Argonaute 2-deficient cell line also retain some gene silencing activity. siRNA-3WJs are most efficient when the antisense strand of the siRNA duplex is positioned 5′ of the 3WJ (5′-siRNA-3WJ) relative to 3′ of the 3WJ (3′-siRNA-3WJ). This work sheds light on the functional properties of siRNA-3WJs and offers a design rule for maximizing their potency in the human RNAi pathway.  相似文献   

15.
A novel ferrocenium capped amphiphilic pillar[5]arene (FCAP) was synthesized and self‐assembled to cationic vesicles in aqueous solution. The cationic vesicles, displaying low cytotoxicity and significant redox‐responsive behavior due to the redox equilibrium between ferrocenium cations and ferrocenyl groups, allow building an ideal glutathione (GSH)‐responsive drug/siRNA co‐delivery system for rapid drug release and gene transfection in cancer cells in which higher GSH concentration exists. This is the first report of redox‐responsive vesicles assembled from pillararenes for drug/siRNA co‐delivery; besides enhancing the bioavailability of drugs for cancer cells and reducing the adverse side effects for normal cells, these systems can also overcome the drug resistance of cancer cells. This work presents a good example of rational design for an effective stimuli‐responsive drug/siRNA co‐delivery system.  相似文献   

16.
An extracellular matrix‐mimicking hydrogel is developed consisting of a hyaluronan‐derived component with anti‐inflammatory activity, and a gelatin‐derived component offering adhesion sites for cell anchorage. The in situ‐forming hyaluronan‐gelatin (HA‐GEL) hydrogel displays a sponge‐like microporous morphology. Also, HA‐GEL shows a rapid swelling pattern reaching maximum weight swelling ratio within 10 min, while at the equilibrium state, fully swollen hydrogels display an exceedingly high water content with ≈2000% of the dry gel weight. Under typical 2D cell culture conditions, murine 3T3 fibroblasts adhere to, and proliferate on top of the HA‐GEL substrates, which demonstrate that HA‐GEL provides a favorable microenvironment for cell survival, adhesion, and proliferation. In vivo healing study further demonstrates HA‐GEL as a viable and effective treatment option to improve the healing outcome of full thickness wounds in diabetic mice by effectively depleting the inflammatory chemokine monocyte chemoattractant protein‐1 in the wound bed.  相似文献   

17.
The efficient delivery of small interfering RNA (siRNA) to tumor cells still remains a great challenge. Of the various nanocarriers, protein nanocages have attracted extensive interest due to their unique structure and suitable characteristics derived from their proteinaceous nature. However, most reported protein nanocages that are developed are based on virus capsid proteins, which may raise safety concerns, including those related to gene mutation and carcinogenesis. The development of nonviral protein‐based systems for siRNA delivery is greatly needed. In this study, a novel siRNA delivery system based on heat shock protein (Hsp) nanocages is developed by a genetic engineering method. The delivery system could condense siRNA into stable complexes and protect the condensed siRNA from degradation. A cellular uptake analysis shows that siRNA is introduced into tumor cells mediated by Hsp‐R9 nanocages. Green fluorescent protein (GFP) expression in HeLa‐EGFP cells is significantly downregulated by Hsp‐R9/siRNA complexes. The results indicate that Hsp nanocages may be a good platform for siRNA delivery into tumor cells.  相似文献   

18.
Caged siRNAs with a single photolabile linker and/or vitamin E (vitE) modification at the 5′ terminal were rationally designed and synthesized. These virtually inactive caged siRNAs were successfully used to photoregulate both firefly luciferase and GFP gene expression in cells with up to an 18.6‐fold enhancement of gene silencing activity, which represents one of the best reported photomodulation of gene silencing efficiencies to date. siRNA tracking and vitE competition experiments indicated that the inactivity of vitE‐modified siRNAs was not due to the bulky moiety of vitE; rather, the involvement of vitE‐binding proteins has a large contribution to caged siRNA inactivation by preventing the dissociation of siRNA/lipo complexes and/or siRNA release. Further patterning experiments revealed the ability to spatially regulate gene expression through simple light irradiation.  相似文献   

19.
Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove that frataxin is a direct p53 target gene by showing that the p53‐responsive element in the promoter of the mouse frataxin gene is bound by p53. The bacterial expression of human frataxin stimulated maturation of human ferrochelatase, which catalyzes the insertion of iron into protoporphyrin at the last step of heme biosynthesis. Overexpression of frataxin in human cancer A431 and HeLa cells lowered 5‐aminolevulinic acid(ALA)‐induced accumulation of protoporphyrin and induced resistance to ALA‐induced photo‐damage, whereas p53 silencing with siRNA in non tumor HEK293T cells down‐regulated the expression of frataxin and increased the accumulation of protoporphyrin. Thus, the decrease of the expression of frataxin unregulated by p53 in tumor cells enhances ALA‐induced photo‐damage, by down‐regulation of mitochondrial functions.  相似文献   

20.
In the current study a new biodegradable nanocomposite based on poly hexamethylene carbonate fumarate (PHMCF) and nano‐sized hydroxyapatite (nano‐HA) has been developed. A silane coupling agent γ‐methacryloxypropyltrimethoxy silane, was used to achieve a good interfacial adhesion between nano‐HA and PHMCF matrix. PHMCF with different nano‐HA contents were characterized using dynamical mechanical thermal analysis (DMTA) and hardness test. The effect of frequency on storage modulus, glass transition temperature (Tg) and the damping were investigated. In vitro cytotoxicity and proliferation were performed using G292 cell lines by MTT assay. The addition of nano‐HA resulted in an increment on the storage modulus and decrement on the damping. Along with improvement in mechanical properties of composites, the addition of nano‐HA resulted in enhanced cell proliferation. Following these results, the newly developed nano‐PHMCF composite scaffold may be considered for bone tissue engineering applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号