共查询到20条相似文献,搜索用时 15 毫秒
1.
Sudip K. Chatterjee Ram Chandra Maji Suman Kumar Barman Prof. Dr. Marilyn M. Olmstead Dr. Apurba K. Patra 《Angewandte Chemie (International ed. in English)》2014,53(38):10184-10189
A functional model complex of nickel superoxide dismutase (NiSOD) with a non‐peptide ligand which mimics the full catalytic cycle of NiSOD is unknown. Similarly, it has not been fully elucidated whether NiSOD activity is a result of an outer‐ or inner‐sphere electron‐transfer mechanism. With this in mind, two octahedral nickel(II)/(III) complexes of a bis‐tridentate N2S donor carboxamide ligand, N‐2‐phenylthiophenyl‐2′‐pyridinecarboxamide (HLPh), have been synthesized, structurally characterized, and their SOD activities examined. These complexes mimic the full catalytic cycle of NiSOD. Electrochemical experiments support an outer‐sphere electron‐transfer mechanism for their SOD activity. 相似文献
2.
Largeron M Neudorffer A Fleury MB 《Angewandte Chemie (International ed. in English)》2003,42(9):1026-1029
3.
Largeron M Chiaroni A Fleury MB 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(3):996-1003
Environmentally friendly oxidation of primary aliphatic amines to imines has been successfully achieved, under metal-free conditions, by the use of diverse electrogenerated o-azaquinone mediators. High catalytic performance, together with high chemoselectivity, were observed with electron-poor o-azaquinone catalysts generated from 2-aminoresorcinol derivatives. Similar to copper amine oxidase enzymes, these mediators exhibited lower reactivity toward alpha-branched primary amines and no reactivity toward secondary amines. In the case of 3,4-aminophenol derivatives lacking a 2-hydroxy group, the generated o-azaquinone species failed to catalyze the oxidation of the amine to the corresponding imine. Further mechanistic considerations allowed a rationalization of the crucial role of the 2-hydroxy group in converting a catalytically inert species into a highly effective biomimetic catalyst. 相似文献
4.
5.
In the pursuit of carbon-free fuels, hydrogen can be considered as an apt energy carrier. The design of molecular electrocatalysts for hydrogen production is important for the development of renewable energy sources that are abundant, inexpensive, and environmentally benign. Over the last 20 years, a large number of electrocatalysts have been developed, and considerable efforts have been directed toward the design of earth-abundant, first-row transition-metal complexes capable of promoting electrocatalytic hydrogen evolution reaction (HER). In this context, numerical approaches have emerged as powerful tools to study the catalytic performances of these complexes. This review covers some of the most significant theoretical mechanistic studies of biomimetic and bioinspired homogeneous HER catalysts. The approaches employed to study the free energy landscapes are discussed and methods used to obtain accurate estimates of relevant observables required to study the HER are presented. Furthermore, the structural and electronic parameters that govern the reactivity, and are necessary to achieve efficient hydrogen production, are discussed in view of future research directions. 相似文献
6.
Aušra Jablonskytė Dr. Joseph A. Wright Dr. Shirley A. Fairhurst Dr. Lee R. Webster Prof. Christopher J. Pickett 《Angewandte Chemie (International ed. in English)》2014,53(38):10143-10146
The synthesis and crystallographic characterization of a complex possessing a well‐defined {2Fe3S(μ‐H)} core gives access to a paramagnetic bridging hydride with retention of the core geometry. Chemistry of this 35‐electron species within the confines of a thin‐layer FTIR spectro‐electrochemistry cell provides evidence for a unprecedented super‐reduced FeI(μ‐H)FeI intermediate. 相似文献
7.
Eilers G Schwartz L Stein M Zampella G de Gioia L Ott S Lomoth R 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(25):7075-7084
The protonation behavior of the iron hydrogenase active-site mimic [Fe2(mu-adt)(CO)4(PMe3)2] (1; adt=N-benzyl-azadithiolate) has been investigated by spectroscopic, electrochemical, and computational methods. The combination of an adt bridge and electron-donating phosphine ligands allows protonation of either the adt nitrogen to give [Fe2(mu-Hadt)(CO)4(PMe3)2]+ ([1 H]+), the Fe-Fe bond to give [Fe2(mu-adt)(mu-H)(CO)4(PMe3)2]+ ([1 Hy]+), or both sites simultaneously to give [Fe2(mu-Hadt)(mu-H)(CO)4(PMe3)2]2+ ([1 HHy]2 +). Complex 1 and its protonation products have been characterized in acetonitrile solution by IR, (1)H, and (31)P NMR spectroscopy. The solution structures of all protonation states feature a basal/basal orientation of the phosphine ligands, which contrasts with the basal/apical structure of 1 in the solid state. Density functional calculations have been performed on all protonation states and a comparison between calculated and experimental spectra confirms the structural assignments. The ligand protonated complex [1 H]+ (pKa=12) is the initial, metastable protonation product while the hydride [1 Hy]+ (pKa=15) is the thermodynamically stable singly protonated form. Tautomerization of cation [1 H]+ to [1 Hy]+ does not occur spontaneously. However, it can be catalyzed by HCl (k=2.2 m(-1) s(-1)), which results in the selective formation of cation [1 Hy]+. The protonations of the two basic sites have strong mutual effects on their basicities such that the hydride (pK(a)=8) and the ammonium proton (pK(a)=5) of the doubly protonated cationic complex [1 HHy]2+ are considerably more acidic than in the singly protonated analogues. The formation of dication [1 HHy]2+ from cation [1 H]+ is exceptionally slow with perchloric or trifluoromethanesulfonic acid (k=0.15 m(-1) s(-1)), while the dication is formed substantially faster (k>10(2) m(-1) s(-1)) with hydrobromic acid. Electrochemically, 1 undergoes irreversible reduction at -2.2 V versus ferrocene, and this potential shifts to -1.6, -1.1, and -1.0 V for the cationic complexes [1 H]+, [1 Hy]+, and [1 HHy]2+, respectively, upon protonation. The doubly protonated form [1 HHy]2+ is reduced at less negative potential than all previously reported hydrogenase models, although catalytic proton reduction at this potential is characterized by slow turnover. 相似文献
8.
Soohyung Kim Ha Young Jeong Seonghan Kim Hongsik Kim Sojeong Lee Prof. Dr. Jaeheung Cho Prof. Dr. Cheal Kim Prof. Dr. Dongwhan Lee 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(14):4700-4708
High-valent metal-oxo species are key intermediates for the oxygen atom transfer step in the catalytic cycles of many metalloenzymes. While the redox-active metal centers of such enzymes are typically supported by anionic amino acid side chains or porphyrin rings, peptide backbones might function as strong electron-donating ligands to stabilize high oxidation states. To test the feasibility of this idea in synthetic settings, we have prepared a nickel(II) complex of new amido multidentate ligand. The mononuclear nickel complex of this N5 ligand catalyzes epoxidation reactions of a wide range of olefins by using mCPBA as a terminal oxidant. Notably, a remarkably high catalytic efficiency and selectivity were observed for terminal olefin substrates. We found that protonation of the secondary coordination sphere serves as the entry point to the catalytic cycle, in which high-valent nickel species is subsequently formed to carry out oxo-transfer reactions. A conceptually parallel process might allow metalloenzymes to control the catalytic cycle in the primary coordination sphere by using proton switch in the secondary coordination sphere. 相似文献
9.
10.
Silicon–Heteroaromatic [FeFe] Hydrogenase Model Complexes: Insight into Protonation,Electrochemical Properties,and Molecular Structures
下载免费PDF全文

Roman Goy Dr. Luca Bertini Dr. Helmar Görls Prof. Dr. Luca De Gioia Dr. Jean Talarmin Dr. Giuseppe Zampella Prof. Dr. Philippe Schollhammer Prof. Dr. Wolfgang Weigand 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(13):5061-5073
To learn from Nature how to create an efficient hydrogen‐producing catalyst, much attention has been paid to the investigation of structural and functional biomimics of the active site of [FeFe]‐hydrogenase. To understand their catalytic activities, the μ‐S atoms of the dithiolate bridge have been considered as possible basic sites during the catalytic processes. For this reason, a series of [FeFe]‐H2ase mimics have been synthesized and characterized. Different [FeFe]‐hydrogenase model complexes containing bulky Si–heteroaromatic systems or fluorene directly attached to the dithiolate moiety as well as their mono‐PPh3‐substituted derivatives have been prepared and investigated in detail by spectroscopic, electrochemical, X‐ray diffraction, and computational methods. The assembly of the herein reported series of complexes shows that the μ‐S atoms can be a favored basic site in the catalytic process. Small changes in the (hetero)‐aromatic system of the dithiolate moiety are responsible for large differences in their structures. This was elucidated in detail by DFT calculations, which were consistent with the experimental results. 相似文献
11.
Towards Norcorrin: Hydrogenation Chemistry and the Heterodimerization of Nickel(II) Norcorrole
下载免费PDF全文

Bin Liu Prof. Xiaofang Li Prof. Marcin Stępień Prof. Piotr J. Chmielewski 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(21):7790-7797
5,14‐Dimesitylnorcorrolatonickel(II) was hydrogenated under mild conditions (room temperature, 1 atm H2, THF solution, 5 min.) in the presence of Raney nickel to yield nonaromatic derivatives that were isolated and characterized by NMR spectroscopy, UV/Vis spectrophotometry, HRMS, cyclic voltammetry, and X‐ray diffraction analysis. The major hydrogenation product, 1,2,3,7,8,9‐hexahydronorcorrolatonickel(II), underwent dimerization in the presence of p‐chloranil to give a nonsymmetrically linked 2,3′‐bis(norcorrole) system that can adopt eight different oxidation states over a redox potential window of 3 V and has a HOMO–LUMO gap of 0.92 V. 相似文献
12.
Dr. Takanori Iwasaki Xin Min Asuka Fukuoka Prof. Dr. Hitoshi Kuniyasu Prof. Dr. Nobuaki Kambe 《Angewandte Chemie (International ed. in English)》2016,55(18):5550-5554
In the presence of a nickel catalyst, 1,3‐butadiene undergoes selective dimerization and alkylarylation with alkyl fluorides and aryl Grignard reagents to give 1,6‐octadienes with alkyl and aryl groups at the 3‐ and 8‐positions, respectively, by the consecutive formation of three carbon–carbon bonds. The formation of an anionic nickel complex plays an important role in forming C?C bonds with alkyl fluorides. 相似文献
13.
The direct detection of nanoparticles is at the forefront of research owing to their environmental and toxicological applications. Herein, we studied the inherent electrochemistry of Ni and NiO nanoparticles and proposed a simple and direct electrochemical method for the determination of the concentrations of both nickel (Ni) and nickel oxide (NiO) nanoparticles in alkaline solution. A highly sensitive voltammetry technique was used to measure the oxidative signal of Ni(OH)2 that formed spontaneously on the surface of Ni and NiO nanoparticles in alkaline media. Detection limits of 220 μg mL?1 for Ni and 13 μg mL?1 for NiO nanoparticles were obtained. Ni and NiO nanoparticles are used as electrode modifiers or as electrochemical signal labels in various biosensing applications. Therefore, methods to rapidly quantify the amount of Ni and NiO nanoparticles are of widespread potential use. 相似文献
14.
15.
Gabriele Hierlmeier Peter Coburger Michael Bodensteiner Robert Wolf 《Angewandte Chemie (International ed. in English)》2019,58(47):16918-16922
While tetrahedranes as a family are scarce, neutral heteroatomic species are all but unknown, with the only reported example being AsP3. Herein, we describe the isolation of a neutral heteroatomic X2Y2 molecular tetrahedron (X, Y=p‐block elements), which also is the long‐sought‐after free phosphaalkyne dimer. Di‐tert‐butyldiphosphatetrahedrane, (tBuCP)2, is formed from the monomer tBuCP in a nickel‐catalyzed dimerization reaction using [(NHC)Ni(CO)3] (NHC=1,3‐bis(2,4,6‐trimethylphenyl)imidazolin‐2‐ylidene (IMes) and 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene (IPr)). Single‐crystal X‐ray structure determination of a silver(I) complex confirms the structure of (tBuCP)2. The influence of the N‐heterocyclic carbene ligand on the catalytic reaction was investigated, and a mechanism was elucidated using a combination of synthetic and kinetic studies and quantum chemical calculations. 相似文献
16.
Yongwang Huang Le Zhang Wei Wei Fakhre Alam 《Phosphorus, sulfur, and silicon and the related elements》2018,193(6):363-368
A series of nickel (II) complexes bearing silicon bridged diphosphines ligands (PNSiP) have been synthesized and characterized. All nickel precatalysts, activated with ethylaluminum dichloride (EtAlCl2), exhibited moderate to high activities for ethylene dimerization to butylene. The in situ nickel precatalysts formed by mixing N-cyclopentyl-N-((diphenylphosphanyl)dimethylsilyl)-1,1-diphenylphosphanamine (L2) with NiBr2(DME) showed high catalytic activity (2.40 × 108 g/(molNi·h)) and high product selectivity (88.6%) towards butene using methylcyclohexane as solvent at 1.0 MPa ethylene pressure and 45°C temperature, no polyethylene(PE) was observed. Ligand backbone tuning of PNSiP-based catalytic systems help in precise understanding of steric bulk variation effects on catalytic performance. 相似文献
17.
18.
Chemically and Electrochemically Triggered Assembly of Viologen Radicals: Towards Multiaddressable Molecular Switches
下载免费PDF全文

Christophe Kahlfuss Dr. Estelle Métay Marie‐Christine Duclos Prof. Marc Lemaire Prof. Anne Milet Prof. Eric Saint‐Aman Dr. Christophe Bucher 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(5):2090-2106
We have established that bipyridinium radicals can be reversibly π‐dimerized under the combined effects of chemical (proton transfer) and electrochemical (electron transfer) stimuli. Our investigations also led to the discovery that a bis‐pyridinyl appended calixarene intermediate is involved in a fully reversible redox‐triggered σ‐dimerization process. The structure of the most stable intramolecular σ‐dimer was provided by computational chemistry and its complete conversion into a noncovalent π‐dimer could be triggered chemically by addition of protons, leading to the formation of protonated cation radicals. Theoretical data collected with the N‐methylated and N‐protonated π‐dimers also support the existence of multivariant orientations in π‐bonded dimers of viologen cation‐radicals. 相似文献
19.
Dr. Quentin Huaulmé Dr. Sadiara Fall Dr. Patrick Lévêque Dr. Gilles Ulrich Dr. Nicolas Leclerc 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(26):6613-6620
A chemical strategy to efficiently perform the dimerization of α-fused boron-dipyrromethene (BODIPY) is reported. The straightforward synthesis of one of these dimers is described and its properties have been investigated through UV/Vis spectroscopy, cyclic voltammetry, differential scanning calorimetry, and charge-carrier mobility measurements by using organic field-effect transistors and space–charge-limited current diodes. The results allow a chemical strategy to decrease the tendency of α-fused BODIPY to crystallize, to increase its light-harvesting properties, and to promote isotropic charge carriers transport. Moreover, the disclosed approach is also a way to maintain the deep LUMO level of α-fused BODIPY; thus making this class of materials highly desirable for optoelectronic applications. 相似文献
20.
Ya‐Chu Hsieh Hau‐Yu Fang Yi‐Ting Chen Rong Yang Prof. Chen‐I Yang Prof. Pi‐Tai Chou Prof. Ming‐Yu Kuo Prof. Yao‐Ting Wu 《Angewandte Chemie (International ed. in English)》2015,54(10):3069-3073
The syntheses, structures, and physical properties of dibenzozethrenes were explored. The results thus obtained were compared with those for zethrenes. Dibenzozethrenes were synthesized by the nickel‐catalyzed cyclodimerization of 9‐ethynyl‐1‐iodoanthracenes. The substituents in zethrene and dibenzozethrene twisted their backbones, and remarkably influenced their properties. Unlike closed‐shell disubstituted derivatives, the parent zethrene and dibenzozethrene are singlet open‐shell biradicals, which were studied by variable‐temperature 1H NMR, ESR, SQUID and computational methods. Since substituents were observed to affect significantly the biradical properties, the relevant mechanisms were analyzed. The nonlinear optical performance of each of these compounds depends on its π‐conjugation and biradical properties. Dibenzozethrenes have larger two‐photon absorption cross‐sections than zethrenes, as most strongly evidenced by the parent dibenzothrene [σmax=4323 GM at 530 nm]. 相似文献