首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了具有不同阶数的受扰不确定混沌系统的降阶修正函数投影同步问题.基于Lyapunov稳定性理论和自适应控制方法,设计了统一的非线性状态反馈控制器和参数更新规则,使得混沌响应系统按照相应的函数尺度因子矩阵和混沌驱动系统的部分状态变量实现同步.方法考虑了实际系统中的模型不确定性和外界扰动,具有较强的实用性和鲁棒性.数值仿真证明了控制方法的有效性.  相似文献   

2.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

3.
This paper investigates the projective synchronization (PS) of different fractional order chaotic systems while the derivative orders of the states in drive and response systems are unequal. Based on some essential properties on fractional calculus and the stability theorems of fractional-order systems, we propose a general method to achieve the PS in such cases. The fractional operators are introduced into the controller to transform the problem into synchronization problem between chaotic systems with identical orders, and the nonlinear feedback controller is proposed based on the concept of active control technique. The method is both theoretically rigorous and practically feasible. We present two examples that illustrate the effectiveness and applications of the method, which include the PS between two 3-D commensurate fractional-order chaotic systems and the PS between two 4-D fractional-order hyperchaotic systems with incommensurate and commensurate orders, respectively. Abundant numerical simulations are given which agree well with the analytical results. Our investigations show that PS can also be achieved between different chaotic systems with non-identical orders. We have further reviewed and compared some relevant methods on this topic reported in several recent papers. A discussion on the physical implementation of the proposed method is also presented in this paper.  相似文献   

4.
Due to the unpredictability of the scaling factor of projective synchronization in coupled partially linear systems, it is hard to know for sure the terminal state of the synchronized dynamics. In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor onto a desired value, based on the invariance principle of differential equations. Firstly, we prove the synchronizability of the proposed simple adaptive projective synchronization control method from the viewpoint of mathematics. Then, two numerical examples are presented to illustrate the applications of the derived results. Finally, we propose a communication scheme based on the adaptive projective synchronization of the Lorenz chaotic system. Numerical simulation shows its feasibility.  相似文献   

5.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

6.
针对带有不确定参数的一类混沌金融系统,提出了实现驱动系统和响应系统广义投影同步的自适应控制策略,并基于Lyapunov稳定性理论给出和验证了广义投影同步稳定性判据.数值仿真验证了控制策略和理论分析的有效性.  相似文献   

7.
This work is involved with switched modified function projective synchronization of two identical Qi hyperchaotic systems using adaptive control method. Switched synchronization of chaotic systems in which a state variable of the drive system synchronize with a different state variable of the response system is a promising type of synchronization as it provides greater security in secure communication. Modified function projective synchronization with the unpredictability of scaling functions can enhance security. Recently formulated hyperchaotic Qi system in the hyperchaotic mode has an extremely broad frequency bandwidth of high magnitudes, verifying its unusual random nature and indicating its great potential for some relevant engineering applications such as secure communications. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems modified function projective synchronized. Synchronization under the effect of noise is also considered. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.  相似文献   

8.
In this work, the feedback control method is proposed to control the behaviour of Liu chaotic dynamical system. The controlled system is stable under some conditions on the parameters of the system determined by Routh-Hurwitz criterion. This paper also presents the adaptive modified function projective synchronization (AMFPS) between two identical Liu chaotic dynamical systems. Based on the Lyapunov stability theorem, adaptive control laws are designed to achieving the AMFPS. Finally, some numerical simulations are obtained to validate the proposed methods.  相似文献   

9.
In this paper, a novel projective synchronization scheme called adaptive generalized function projective lag synchronization (AGFPLS) is proposed. In the AGFPLS method, the states of two different chaotic systems with fully uncertain parameters are asymptotically lag synchronized up to a desired scaling function matrix. By means of the Lyapunov stability theory, an adaptive controller with corresponding parameter update rule is designed for achieving AGFPLS between two diverse chaotic systems and estimating the unknown parameters. This technique is employed to realize AGFPLS between uncertain Lü chaotic system and uncertain Liu chaotic system, and between Chen hyperchaotic system and Lorenz hyperchaotic system with fully uncertain parameters, respectively. Furthermore, AGFPLS between two different uncertain chaotic systems can still be achieved effectively with the existence of noise perturbation. The corresponding numerical simulations are performed to demonstrate the validity and robustness of the presented synchronization method.  相似文献   

10.
研究了具有未知参数和外界扰动的多个混沌系统之间的双路组合函数投影同步问题.首先给出了由四个混沌驱动系统和两个混沌响应系统组成的双路组合函数投影同步系统的定义,然后以Lyapunov稳定性理论和不等式变换方法为分析依据,设计了鲁棒自适应控制器和参数自适应律,使得两路同步系统中的响应系统和驱动系统按照相应的函数比例因子矩阵...  相似文献   

11.
This paper discusses some basic dynamical properties of the chaotic finance system with parameter switching perturbation, and investigates chaos projective synchronization of the chaotic finance system with the time‐varying delayed feedback controller, which are not fully considered in the existing research. Different from the previous methods, in this paper, the delayed feedback controller is not only time‐varying, but also the time‐varying delay is adaptive. Finally, an illustrate example is provided to show the effectiveness of this method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
研究了一类混沌系统的函数投影同步问题.基于Lyapunov稳定性理论和主动滑模控制方法,设计了主动滑模控制器,实现混沌系统的函数投影同步.数值仿真验证了该控制器的有效性和正确性.  相似文献   

14.
We consider the coupling of two uncertain dynamical systems with different orders using an adaptive feedback linearization controller to achieve reduced-order synchronization between the two systems. Reduced-order synchronization is the problem of synchronization of a slave system with projection of a master system. The synchronization scheme is an exponential linearizing-like controller and a state/uncertainty estimator. As an illustrative example, we show that the dynamical evolution of a second-order driven oscillator can be synchronized with the canonical projection of a fourth-order chaotic system. Simulation results indicated that the proposed control scheme can significantly improve the synchronousness performance. These promising results justify the usefulness of the proposed output feedback controller in the application of secure communication.  相似文献   

15.

In this paper, we investigate the modified function projective lag synchronization for two different stochastic chaotic systems using adaptive control method. We design an adaptive controller to make the mean square of synchronization error convergence to an arbitrarily small bound around zero depending on the controller feedback gain according to the Lyapunov stability theory. One example is presented to demonstrate the effectiveness of the proposed controller.

  相似文献   

16.
This study demonstrates that synchronization and anti-synchronization can coexist in Chen–Lee chaotic systems by direct linear coupling. Based on Lyapunov’s direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen–Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.  相似文献   

17.
This paper mainly investigates adaptive generalized function projective synchronization of two different uncertain chaotic systems, which is a further extension of many existing projection synchronization schemes, such as modified projection synchronization, function projective synchronization and so on. On the basis of Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is designed, and some parameter update laws for estimating the unknown parameters of the systems are also gained. This technique is applied to achieve synchronization between Lorenz and Rössler chaotic systems. The numerical simulations demonstrate the validity and feasibility of the proposed method.  相似文献   

18.
This article aims to introduce a projective synchronization approach based on adaptive fuzzy control for a class of perturbed uncertain multivariable nonaffine chaotic systems. The fuzzy‐logic systems are employed to approximate online the uncertain functions. A Lyapunov approach is used to design the parameter adaptation laws and to demonstrate the boundedness of all signals of the closed‐loop system as well as the convergence of the synchronization errors to bounded residual sets. Finally, numerical simulation results are presented to verify the feasibility and effectiveness of the proposed synchronization system based on fuzzy adaptive controller. © 2014 Wiley Periodicals, Inc. Complexity 21: 180–192, 2015  相似文献   

19.
This paper investigates the synchronization of three dimensional chaotic systems by extending our previous method for chaos stabilization, and proposes a novel simple adaptive feedback controller for chaos synchronization. In comparison with previous methods, the present controller contains single state feedback. To our knowledge, the above controller is the simplest control scheme for synchronizing the three dimensional chaotic systems. The results are validated using numerical simulations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号