首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light‐driven multielectron redox reactions (e.g., hydrogen (H2) evolution, CO2 reduction) have recently appeared at the front of solar‐to‐fuel conversion. In this Minireview, we focus on the recent advances in establishing semiconductor quantum dot (QD) assemblies to enhance the efficiencies of these light‐driven multielectron reduction reactions. Four models of QD assembly are established to promote the sluggish kinetics of multielectron transfer from QDs to cocatalysts, thus leading to an enhanced activity of solar H2 evolution or CO2 reduction. We also forecast the potential applications of QD assemblies in other multielectron redox reactions, such as nitrogen (N2) fixation and oxygen (O2) evolution from H2O.  相似文献   

2.
Carbon dioxide (CO2) and hydrogen sulfide (H2S) are generally concomitant with methane (CH4) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO2 and H2S into value‐added products is attractive; however it has not received enough attention. A solar‐driven electrochemical process is demonstrated using graphene‐encapsulated zinc oxide catalyst for CO2 reduction and graphene catalyst for H2S oxidation mediated by EDTA‐Fe2+/EDTA‐Fe3+ redox couples. The as‐prepared solar‐driven electrochemical system can realize the simultaneous conversion of CO2 and H2S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits.  相似文献   

3.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

4.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

5.
Biocatalytic transformation has received increasing attention in the green synthesis of chemicals because of the diversity of enzymes, their high catalytic activities and specificities, and mild reaction conditions. The idea of solar energy utilization in chemical synthesis through the combination of photocatalysis and biocatalysis provides an opportunity to make the “green” process greener. Oxidoreductases catalyze redox transformation of substrates by exchanging electrons at the enzyme′s active site, often with the aid of electron mediator(s) as a counterpart. Recent progress indicates that photoinduced electron transfer using organic (or inorganic) photosensitizers can activate a wide spectrum of redox enzymes to catalyze fuel‐forming reactions (e.g., H2 evolution, CO2 reduction) and synthetically useful reductions (e.g., asymmetric reduction, oxygenation, hydroxylation, epoxidation, Baeyer–Villiger oxidation). This Review provides an overview of recent advances in light‐driven activation of redox enzymes through direct or indirect transfer of photoinduced electrons.  相似文献   

6.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

7.
Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical‐chemical loop linked by redox couples such as Fe2+/Fe3+ and I?/I3? for photoelectrochemical H2 production and H2S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2S was successfully split into elemental sulfur and H2 with high stability and selectivity under simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction.  相似文献   

8.
《中国化学》2018,36(5):455-460
Photochemical reduction of CO2 with H2O into energy‐rich chemicals using inexhaustible solar energy is an appealing strategy to simultaneously address the global energy and environmental issues. Earth‐abundant metal complexes show promising application in this field due to their easy availability, rich redox valence and tunable property. Great progress has been seen on catalytic reduction of CO2 under visible light illumination employing earth‐abundant metal complexes and their hybrids as key contributors, especially for producing CO and HCOOH via the two‐electron reduction process. In this minireview, we will summarize and update advances on earth‐abundant metal complex‐derived photocatalytic system for visible‐light driven CO2 photoreduction over the last 5 years. Homogeneous earth‐abundant metal complex photocatalysts and earth‐abundant metal complex derived hybrid photocatalysts were both presented with focus on efficient improvement strategy.  相似文献   

9.
Materials for high‐efficiency photocatalytic CO2 reduction are desirable for solar‐to‐carbon fuel conversion. Herein, highly dispersed nickel cobalt oxyphosphide nanoparticles (NiCoOP NPs) were confined in multichannel hollow carbon fibers (MHCFs) to construct the NiCoOP‐NPs@MHCFs catalysts for efficient CO2 photoreduction. The synthesis involves electrospinning, phosphidation, and carbonization steps and permits facile tuning of chemical composition. In the catalyst, the mixed metal oxyphosphide NPs with ultrasmall size and high dispersion offer abundant catalytically active sites for redox reactions. At the same time, the multichannel hollow carbon matrix with high conductivity and open ends will effectively promote mass/charge transfer, improve CO2 adsorption, and prevent the metal oxyphosphide NPs from aggregation. The optimized hetero‐metal oxyphosphide catalyst exhibits considerable activity for photosensitized CO2 reduction, affording a high CO evolution rate of 16.6 μmol h?1 (per 0.1 mg of catalyst).  相似文献   

10.
《化学:亚洲杂志》2017,12(16):1985-1996
The reduction of CO2 into useful products, including hydrocarbon fuels, is an ongoing area of particular interest due to efforts to mitigate buildup of this greenhouse gas. While the industrial Fischer–Tropsch process can facilitate the hydrogenation of CO2 with H2 to form short‐chain hydrocarbon products under high temperatures and pressures, a desire to perform these reactions under ambient conditions has inspired the use of biological approaches. Particularly, enzymes offer insight into how to activate and reduce CO2, but only one enzyme, nitrogenase, can perform the multielectron, multiproton reduction of CO2 into hydrocarbons. The vanadium‐containing variant, V‐nitrogenase, displays especial reactivity towards the hydrogenation of CO and CO2. This Focus Review discusses recent progress towards the activation and reduction of CO2 with three primary V‐nitrogenase systems. These systems span both ATP‐dependent and ATP‐independent processes and utilize approaches with whole cells, isolated proteins, and extracted cofactors.  相似文献   

11.
The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar‐light utilization efficiency. This is due to several crucial features of the Group VIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (mol h?1 g?1) that are several orders of magnitude larger than those obtained with photocatalytic methods (μmol h?1 g?1) were thus achieved. It is proposed that the overall water‐based CO2 conversion process can be achieved by combining light‐driven H2 production from water and photothermal CO2 conversion with H2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo‐induced green‐chemistry processes.  相似文献   

12.
In many of the chemical steps in photosynthesis and artificial photosynthesis, proton coupled electron transfer (PCET) plays an essential role. An important issue is how excited state reactivity can be integrated with PCET to carry out solar fuel reactions such as water splitting into hydrogen and oxygen or water reduction of CO2 to methanol or hydrocarbons. The principles behind PCET and concerted electron–proton transfer (EPT) pathways are reasonably well understood. In Photosystem II antenna light absorption is followed by sensitization of chlorophyll P680 and electron transfer quenching to give P680+. The oxidized chlorophyll activates the oxygen evolving complex (OEC), a CaMn4 cluster, through an intervening tyrosine–histidine pair, YZ. EPT plays a major role in a series of four activation steps that ultimately result in loss of 4e?/4H+ from the OEC with oxygen evolution. The key elements in photosynthesis and artificial photosynthesis – light absorption, excited state energy and electron transfer, electron transfer activation of multiple-electron, multiple-proton catalysis – can also be assembled in dye sensitized photoelectrochemical synthesis cells (DS-PEC). In this approach, molecular or nanoscale assemblies are incorporated at separate electrodes for coupled, light driven oxidation and reduction. Separate excited state electron transfer followed by proton transfer can be combined in single semi-concerted steps (photo-EPT) by photolysis of organic charge transfer excited states with H-bonded bases or in metal-to-ligand charge transfer (MLCT) excited states in pre-associated assemblies with H-bonded electron transfer donors or acceptors. In these assemblies, photochemically induced electron and proton transfer occur in a single, semi-concerted event to give high-energy, redox active intermediates.  相似文献   

13.
《Electroanalysis》2006,18(24):2426-2434
Clay‐based layer‐by‐layer architectures are studied in view of the development of new electrode materials for two highly attractive enzymatic reactions: metal bioremediation and hydrogen uptake. The buildup of layer‐by‐layer (LBL) assemblies of positively charged specific mediators of these enzymatic reactions and negatively charged montmorillonite nanoparticles were carried out onto gold and graphite electrodes. The structure and stability of the assemblies were examined using quartz crystal microgravimetry (QCM) and electrochemical techniques. Satisfactory catalytic efficiencies were observed through the LBL construction, either for bacterial cytochrome c3‐mediated metal reduction, or hydrogen uptake via immobilized hydrogenase in the presence of an artificial shuttle, methylviologen. Interestingly, it is established that intercalating cytochrome c3 layers between hydrogenase/montmorillonite layers not only protects hydrogenase from leaching, but allows H2 uptake/evolution catalytic reaction without any additional diffusing redox mediator.  相似文献   

14.
Photo/electrochemical CO2 splitting is impeded by the low cost‐effective catalysts for key reactions: CO2 reduction (CDRR) and water oxidation. A porous silicon and nitrogen co‐doped carbon (SiNC) nanomaterial by a facile pyrolyzation was developed as a metal‐free bifunctional electrocatalyst. CO2‐to‐CO and oxygen evolution (OER) partial current density under neutral conditions were enhanced by two orders of magnitude in the Tafel regime on SiNC relative to single‐doped comparisons beyond their specific area gap. The photovoltaic‐driven CO2 splitting device with SiNC electrodes imitating photosynthesis yielded an overall solar‐to‐chemical efficiency of advanced 12.5 % (by multiplying energy efficiency of CO2 splitting cell and photovoltaic device) at only 650 mV overpotential. Mechanism studies suggested the elastic electron structure of ?Si(O)?C?N? unit in SiNC as the highly active site for CDRR and OER simultaneously by lowering the free energy of CDRR and OER intermediates adsorption.  相似文献   

15.
The integration of enzymes with synthetic materials allows efficient electrocatalysis and production of solar fuels. Here, we couple formate dehydrogenase ( FDH ) from Desulfovibrio vulgaris Hildenborough (DvH) to metal oxides for catalytic CO2 reduction and report an in‐depth study of the resulting enzyme–material interface. Protein film voltammetry (PFV) demonstrates the stable binding of FDH on metal‐oxide electrodes and reveals the reversible and selective reduction of CO2 to formate. Quartz crystal microbalance (QCM) and attenuated total reflection infrared (ATR‐IR) spectroscopy confirm a high binding affinity for FDH to the TiO2 surface. Adsorption of FDH on dye‐sensitized TiO2 allows for visible‐light‐driven CO2 reduction to formate in the absence of a soluble redox mediator with a turnover frequency (TOF) of 11±1 s?1. The strong coupling of the enzyme to the semiconductor gives rise to a new benchmark in the selective photoreduction of aqueous CO2 to formate.  相似文献   

16.
Nanocomposites of tantalum‐based pyrochlore nanoparticles and indium hydroxide were prepared by a hydrothermal process for UV‐driven photocatalytic reactions including overall water splitting, hydrogen production from photoreforming of methanol, and CO2 reduction with water to produce CO. The best catalyst was more than 20 times more active than sodium tantalate in overall water splitting and 3 times more active than Degussa P25 TiO2 in CO2 reduction. Moreover, the catalyst was very stable while generating stoichiometric products of H2 (or CO) and O2 throughout long‐term photocatalytic reactions. After the removal of In(OH)3, the pyrochlore nanoparticles remained highly active for H2 production from pure water and aqueous methanol solution. Both experimental studies and density functional theory calculations suggest that the pyrochlore nanoparticles catalyzed the water reduction to produce H2, whereas In(OH)3 was the major active component for water oxidation to produce O2.  相似文献   

17.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen-doped carbon supported single-atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single-atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm−2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single-atom configurations for the H2 and CO evolution. The results present a useful case on how non-precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

18.
Photo/electrocatalysis of water (H2O) splitting and CO2 reduction reactions is a promising strategy to alleviate the energy crisis and excessive CO2 emissions. For the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and CO2 reduction reaction (CO2RR) involved, the development of effective photo/electrocatalysts is critical to reduce the activation energy and accelerate the sluggish dynamics. Polyoxometalate (POM)-based compounds with tunable compositions and diverse structures are emerging as unique photo/electrocatalysts for these reactions as they offer unparalleled advantages such as outstanding solution and redox stability, quasi-semiconductor behaviour, etc. This Minireview provides a basic introduction related to photo/electrocatalytic HER, OER and CO2RR, followed by the classification of pristine POM-based compounds toward different catalytic reactions. Recent breakthroughs in engineering POM-based compounds as efficient photo/electrocatalysts are highlighted. Finally, the advantages, challenges, strategies and outlooks of POM-based compounds on improving photo/electrocatalytic performance are discussed.  相似文献   

19.
Main‐group complexes are shown to be viable electrocatalysts for the H2‐evolution reaction (HER) from acid. A series of antimony porphyrins with varying axial ligands were synthesized for electrocatalysis applications. The proton‐reduction catalytic properties of TPSb(OH)2 (TP=5,10,15,20‐tetra(p ‐tolyl)porphyrin) with two axial hydroxy ligands were studied in detail, demonstrating catalytic H2 production. Experiments, in conjunction with quantum chemistry calculations, show that the catalytic cycle is driven via the redox activity of both the porphyrin ligand and the Sb center. This study brings insight into main group catalysis and the role of redox‐active ligands during catalysis.  相似文献   

20.
Hierarchical FeCoS2–CoS2 double‐shelled nanotubes have been rationally designed and constructed for efficient photocatalytic CO2 reduction under visible light. The synthetic strategy, engaging the two‐step cation‐exchange reactions, precisely integrates two metal sulfides into a double‐shelled tubular heterostructure with both of the shells assembled from ultrathin two‐dimensional (2D) nanosheets. Benefiting from the distinctive structure and composition, the FeCoS2–CoS2 hybrid can reduce bulk‐to‐surface diffusion length of photoexcited charge carriers to facilitate their separation. Furthermore, this hybrid structure can expose abundant active sites for enhancing CO2 adsorption and surface‐dependent redox reactions, and harvest incident solar irradiation more efficiently by light scattering in the complex interior. As a result, these hierarchical FeCoS2–CoS2 double‐shelled nanotubes exhibit superior activity and high stability for photosensitized deoxygenative CO2 reduction, affording a high CO‐generating rate of 28.1 μmol h?1 (per 0.5 mg of catalyst).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号