首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The determination of biomedical markers and pathogens using electrochemical sensors is a well-established technique in which the transducer and the recognition element are used to detect the target molecule. There is a growing interest in molecularly imprinted polymer (MIPs) applications as promising recognition elements. The use of MIPs as recognition elements in electrochemical sensors offers the advantages of being fast, low cost, and, at the same time, provides accurate and selective results compared with other commonly applied routine methods for biomedical markers and pathogen detection. Compared with other nanomaterials and aptamer-based biosensors, MIP-based sensors offered excellent selectivity for low-priced reagents to be used. The aim of the current review is to discuss the most recent applications of MIP-based electrochemical sensors (2019–2021) as promising detection devices for some important biomarkers, enzymes, and pathogens, such as viruses, bacteria, and toxins.  相似文献   

2.
Explosive detection technologies play a critical role in maintaining national security, remain an active research field with many devices and analytical/electroanalytical techniques. Analytical chemistry needs for homeland defense against terrorism make it clear that real-time and on-site detection of explosives and chemical warfare agents (CWAs) are in urgent demand. Thus, current detection techniques for explosives have to be improved in terms of sensitivity and selectivity, opening the way to electrochemical devices suitable to obtain the targeted analytical information in a simpler, cheaper and faster way. For the electrochemical determination of energetic substances, a large number of sensor electrodes have been presented in literature using different modification materials, especially displaying higher selectivity with molecularly imprinted polymers (MIPs). MIPs have already been utilized for the detection of hazardous materials due to their mechanical strength, flexibility, long-time storage and low cost. The sensitivity of MIP-based electrosensors can be enhanced by coupling with nanomaterials such as graphene oxide (GOx), carbon nanotubes (CNTs), or nanoparticles (NPs). Specific characteristics of involved nanomaterials, their modification, detection mechanism, and other analytical aspects are discussed in detail. Non-MIP electrosensors are generally functionalized with materials capable of charge transfer, H-bonding or electrostatic interactions with analytes for pre-concentration and electrocatalysis on their surface, whereas nanobio-electrosensors use analyte-selective aptamers having specific sequences of DNA, peptides or proteins to change the potential or current. This review intends to provide a combination of information related to MIPs and nanomaterial-based electrochemical sensors, limited to the most significant and illustrative work recently published.  相似文献   

3.
Nanomaterial-enabled electrochemical sensors are designed as an economical, efficient, and user-friendly analytical tool for on-site and routine nitrate analysis over a wide range of environmental samples. The remarkable advances and tunable attributes of nanomaterials have greatly improved the analytical performance of electrochemical nitrate sensors. In this review, a comprehensive elucidation of the recent advances in nanomaterial-based electrochemical nitrate sensors is presented. The review firstly provides a general introduction, followed by typical electrochemical sensing methods. The next two sections detail various nanomaterials, including graphene derivatives, carbon nanotubes/fibers, metal/bimetal/metal oxide nanoparticles, and conducting polymers for modifying electrodes in enzymatic and non-enzymatic electrochemical nitrate sensors. Finally, the perspectives and current challenges in achieving real-world applications of nanomaterial-based electrochemical nitrate sensors are outlined.  相似文献   

4.
In this review, the applications of molecularly imprinted polymer (MIP) materials in the area of electrochemical sensors have been explored. The designs of the MIPs containing different polymers, their preparation and their immobilization on the transducer surface have been discussed. Further, the employment of various transducers containing the MIPs based on different electrochemical techniques for determining analytes has been assessed. In addition, the general protocols for getting the electrochemical signal based on the binding ability of analyte with the MIPs have been given. The review ends with describing scope and limitations of the above electrochemical based MIP sensors.  相似文献   

5.
The ever-increasing environmental pollution is a severe threat to the ecosystem’s healthy sustainability, and therefore environmental monitoring of these pollutants has become a burning issue throughout the world. In recent years, cost-effective, selective, portable, sensitive, and rapid sensing devices must be developed in urgent need. Advancement in nanotechnology has urged the use of different types of nanomaterials as an excellent electrode material to amplify the electrochemical detection in terms of long-term stability and electrocatalytic activity of the electrochemical sensors in addition to fulfill the aforementioned desires. This review article intimates significant advancement in developing the enzymatic and non-enzymatic electrochemical sensors based on different nanomaterials for the detection of resorcinol (RS) in the absence or presence of other phenolic compounds. This also concludes the current associated challenges as well as future perspectives for the analysis of RS in the environment. There is plethora of reported articles on RS sensors, but this review mainly discusses the selective reports on the applications of RS sensors.  相似文献   

6.
This article presents an overview of electrochemical sensors that employ nanomaterials and utilize electrochemical impedance spectroscopy for analyte detection. The most widely utilized nanomaterials in impedance sensors are gold (Au) nanoparticles and carbon nanotubes (CNTs). Au nanoparticles have been employed in impedance sensors to form electrodes from nanoparticle ensembles and to amplify impedance signals by forming nanoparticle-biomolecule conjugates in the solution phase. CNTs have been employed for impedance sensors within composite electrodes and as nanoelectrode arrays. The advantages of nanomaterials in impedance sensors include increased sensor surface area, electrical conductivity and connectivity, chemical accessibility and electrocatalysis.  相似文献   

7.
Detection of small metabolite biomarkers at different concentrations could be powerfully used for disease diagnosis and progression. To enhance detection capabilities, nanomaterials possessing excellent optical and electrochemical properties have been integrated into a wide range of sensing or detection platforms. This review will highlight recent developments in creating electrochemical sensors alongside biosensors using carbon nanomaterials and metallic nanoparticles that target small metabolites. Moreover, electrochemical sensors having different detection strategies toward metabolites (such as amino acids, amino acid–derived neurotransmitters, vitamins, adenosine triphosphate, and purine derivatives) will be discussed. Finally, certain challenging issues and future aspects of nanomaterials-integrated electrochemical sensors for small metabolites will be discussed.  相似文献   

8.
Recently, the field of highly-ordered mesoporous and macroporous thin films coated onto solid electrode surfaces has begun to receive attention due to their great interest for electrochemical analysis. This review highlights the features of both electricallyconducting and non-conducting organized layers, which are applicable to designing electrochemical sensors, and the methods applied to construct these novel nanomaterials.We emphasize methods based on use of self-assembled colloidal templates (e.g., surfactants or nanoparticles), around which the materials of interest are formed. We then describe their basic electrochemical behavior and discuss their possible use as electrochemical sensors and biosensors, mostly in the particular case of structured metallic layers, functionalized mesoporous silica films, and some other continuous three-dimensional ordered porous structures.  相似文献   

9.
This review presents the state of the art of DNA sensors (or genosensors) that utilize electrochemical impedance spectroscopy as the transduction technique. As issue of current interest, it is centered on the use of nanomaterials to develop or to improve performance of these specific biosensors. It will describe the different principles that may be employed in the measuring step and the different formats adopted for detection of a DNA sequence or confirmation or amplification of the finally obtained signal. The use of nanomaterials for the above listed aspects, viz. the use of carbon nanotubes or other nanoscopic elements in the construction of the electrodes, or the use of nanoparticles, mainly gold or quantum dots, for signal enhancement will be fully revised.  相似文献   

10.
The heavy metal ions,especially Cd~(2+),Pb~(2+) and Hg~(2+),show extremely hazard to the environment and human being.The measurement of heavy metal ions using sensors is catching more and more attention for its advantages of high sensitivity and selectivity,low-cost,convenience to handle and rapid detection.In recent years,nanomaterials such as gold nanoparticles(NPs),magnetic nanoparticles,graphene and nanocomposite materials are applied in sensors for improving sensitivity and selectivity,making the research on electrochemical(EC) sensors,spectrometric biosensors and colorimetric biosensors become a hot spot in the application to investigate heavy metal ions,in particular,Cd~(2+),Pb~(2+) and Hg~(2+).In this short review,the research of advanced detection of Cd~(2+),Pb~(2+) and Hg~(2+) and its progress based on nanomaterial sensors in recent years is reviewed.  相似文献   

11.
《Analytical letters》2012,45(11):1821-1834
In recent years, considerable attention has been paid to developing economical yet rapid glucose sensors using graphene and its composites. Recently, the excellent properties of graphene and metal oxide nanoparticles have been combined to provide a new approach for highly sensitive glucose sensors. This review focuses on the development of graphene functionalized with different nanostructured metal oxides (such as copper oxide, zinc oxide, nickel oxide, titanium dioxide, iron oxide, cobalt oxide, and manganese dioxide) for use as glucose biosensors. Additionally, a brief introduction of the electrochemical principles of glucose biosensors (including amperometric, potentiometric, and conductometric) is presented. Finally, the current status and future prospects are outlined for graphene/metal oxide nanomaterials in glucose sensing.  相似文献   

12.
本文介绍了近年来纳米材料电化学与生物传感器在有机微污染物检测中的研究现状,分析了这些传感器中纳米材料修饰电极的特点,重点阐述了纳米材料在有机微污染物检测中的重要作用,列举了一些纳米材料电化学与生物传感器在有机微污染物检测中的应用。最后对纳米材料电化学与生物传感器用于有机微污染物的检测研究进行了简要评述和展望。  相似文献   

13.
This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices. In recent years, growing interest in molecularly imprinted polymers (MIPs) in the preparation of recognition elements has led researchers to design novel formats for improvement of MIP sensors. Among possible approaches proposed in the literature on this topic, we will focus on the electrosynthesis of MIPs and on less common hybrid technology (e.g. based on electrochemistry and classical MIPs, or nanotechnology). Starting from the early work reported in this field, an overview of the most innovative and successful examples will be reviewed.  相似文献   

14.
Electrochemical DNA sensors represent a simple, accurate and economical platform for DNA detection. Gold nanoparticles are known to be efficient labels in electrochemical sensors and to be viable materials to modify the surface of electrodes thereby to enhance the detection limit of the sensor. For surface modification, gold nanoparticles are used in combination with nanomaterials like graphene, graphene oxide, or carbon nanotubes to improve electrochemical performance in general. This review (with 116 refs.) mainly covers the advances made in recent years in the use of gold nanoparticles in DNA sensing. It is divided into the following main sections: (a) An introduction covers aspects of electrochemical sensing of DNA and of appropriate nanomaterials in general. (b) The use of gold nanoparticles in DNA is specifically addressed next, with subsections on AuNPs acting as electrochemical labels, electron transfer mediators, signal amplifiers, carriers of electroactive molecules, catalysts, immobilization platforms, on silver enhancement strategies, on AuNPs modified with carbonaceous materials (such as graphenes and nanotubes), and on multiple amplification schemes. The review concludes with a discussion of current challenges and trends in terms of highly sensitive DNA based sensing using AuNPs.
Graphical abstract The review describes the state of the art in the use of gold nanoparticles in the electrochemical DNA sensors and contains sections on the use of AuNPs as labels, signal amplifiers, carriers of electroactive molecules, catalyst, immobilization platform, and on silver enhancement and multiple amplification strategies.
  相似文献   

15.
Carbendazim sensors with high sensitivity and selectivity have become imperative for the welfare of the food industry, agriculture, aquaculture, and forestry. The design and development of sensors with high sensitivity and selectivity require deeper insights into the chemistry of nanomaterials. Driven by these needs, we intend to offer a concise discussion of diverse materials and various analytical techniques employed for carbendazim detection. This review focuses on interpreting the performance of well-recognized techniques integrated with keenly engineered nanomaterials, critical discussions on the drawbacks of the available sensors, and subsequent advances in nano-tailored materials. This review also provides constructive ideas for the requirement of maiden electrochemical and optical sensors, as well as existing challenges and future prospects.  相似文献   

16.
Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.  相似文献   

17.
Nanomaterials used in electrochemical sensors can significantly improve the analytical performance to environmental pollutants. This review mainly discusses the strategies for signal amplification by the rational design of nanoelectrode materials from the perspective of mass and electron transfer processes of electrode/solution interface. First, the advantages and features of nanostructured electrochemical sensors for environmental pollutants are summarized. Then, the detailed discussions are focused on the signal amplification strategies by regulating dimensionality, atomic arrangement, and composition of electrode materials. This review gives a unique insight about the influences of electrode material design on mass and electron transfer processes of electrochemical sensors. Finally, on the basis of the current achievements in the field of nanomaterials, the perspectives on the challenges and opportunities for the exploration of nanostructured electrochemical sensors are put forward.  相似文献   

18.
The electrochemical microRNA sensors are considered efficient, simple, and inexpensive analytical tools for the early diagnosis of cancer biomarkers. To enhance the sensitivity of the electrochemical genosensors toward detection of microRNAs, several amplification strategies based mainly on nanomaterials, enzymes, and oligonucleotides are investigated and discussed. This review highlights the main current achievements regarding the new promising and sensitive strategies for genosensors’ development, thus allowing for miroRNA analysis at the attomolar level.  相似文献   

19.
This review (with 196 refs.) covers the state of the art in electrochemical and optical immunoassays for the carcinoembryonic antigen (CEA). In essence, it has sections on (a) frequently applied principles and types of CEA immunoassays; (b) aspects of sensor fabrication including immunological and immobilization procedures and the proper choice of nanomaterials; (c) electrochemical immunoassays, with subsections on assays based on the use of nanoparticles and other nanomaterials (such as conducting polymers and graphenes); (d) optical immunoassays based on the use of nanoparticles such as quantum dots, gold nanoparticles, upconversion nanoparticles, graphenes and their derivatives; (d) lateral flow and lab-on-a-chip (microfluidic) immunoassays; and (e) on multiplexed electrochemical and optical immunoassays with and without labels. Examples for applications to real samples are given. A final section discusses current limitations and trends in terms of sensing schemes and nanomaterials. 
Graphical abstract A key to develop nanodevices with high performance for immunoassay applications is to explore advanced functional nanomaterials. This review focus on practical aspects trying to give the readers useful insights that should be considered such as the choice of the advanced nanomaterials to be used, the best methods/techniques in immunesensing of CEA.
  相似文献   

20.
This review (with 340 refs) focuses on methods for specific and sensitive detection of metabolites for diagnostic purposes, with particular emphasis on electrochemical nanomaterial-based sensors. It also covers novel candidate metabolites as potential biomarkers for diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis. Following an introduction into the field of metabolic biomarkers, a first major section classifies electrochemical biosensors according to the bioreceptor type (enzymatic, immuno, apta and peptide based sensors). A next section covers applications of nanomaterials in electrochemical biosensing (with subsections on the classification of nanomaterials, electrochemical approaches for signal generation and amplification using nanomaterials, and on nanomaterials as tags). A next large sections treats candidate metabolic biomarkers for diagnosis of diseases (in the context with metabolomics), with subsections on biomarkers for neurodegenerative diseases, autism spectrum disorder and hepatitis. The Conclusion addresses current challenges and future perspectives.
Graphical abstract This review focuses on the recent developments in electrochemical biosensors based on the use of nanomaterials for the detection of metabolic biomarkers. It covers the critical metabolites for some diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号