首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(7):1794-1804
The sensitivity enhancing properties of sodium dodecyl sulphate (SDS) and multi‐walled carbon nanotubes (MWCNTs) were associated to construct a nanosensor based on carbon paste electrode (CPE) by adopting drop cast method. The drop cast method makes use of minimum modifier and the entire modified surface of the sensor is available for the analyte. Surface characterization of the electrodes was carried out using FE‐SEM and EDX. EIS was used for the electrochemical characterization. We report for the first time the electrochemical analysis based on the oxidation of the ‐OH group of a novel drug, alpha‐hydrazinonitroalkene ( I ) which was found to have antibacterial and antimicrobial properties. The electron transfer kinetic parameters such as the charge transfer coefficient α and heterogeneous rate constant k′ were calculated and they have been found to be 0.64 and 9.62 × 10−2 cm s−1 respectively. The linear response ranges for ( I ) obtained at this sensor are 1.0 × 10−7 M − 7.0 × 10−7 M and 1.0 × 10−6 M – 4.5 × 10−5 M with a detection limit of (7.03 ± 0.41) × 10−8 M (S/N=3). The interference study suggested that the sensor was free from 1000‐fold excess of UA in the determination of ( I ). It was important to note that the sensor completely eliminated Ascorbic acid (AA) signal which offered a significant analytical advantage for the determination of the drug at this sensor. The practical usefulness of the modified sensor was demonstrated by the analysis of ( I ) in blood serum.  相似文献   

2.
A sensitive nitrite (NO2) biosensor was fabricated by using sodium dodecyl sulfate (SDS), Au nanorods, and thionine functionalized MWCNTs (TH‐f‐MWCNTs) nanohybrids modified glassy carbon electrode. TH was covalently immobilized on the MWCNTs via a carbodiimide reaction. Comparing with MWCNTs/GCE, TH‐f‐MWCNTs/GCE displays higher catalytic activity toward the oxidation of NO2, since TH not only promoted the electronic transmission but also could improve the concentration of NO2 at the surface of the modified electrode in acidic solutions. The Au nanorods (AuNRs) were prepared through a simple wet chemical method and were characterized by TEM. The extremely high surface‐to‐volume ratios associated with one dimension nanostructures make their electrical properties extremely sensitive to species adsorbed on surfaces and result in excellent sensitivity and selectivity. SDS displays excellent film forming ability, which made the electrode stable. Under optimal conditions, the linear range for the detection of nitrite was 0.26 to 51 μM, and the low detection limit was 20 nM. In addition, the modified electrode was successfully applied to determine nitrite in real water samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
An approach involving ion‐pair switchable‐hydrophilicity solvent‐based homogeneous liquid–liquid microextraction coupled to high‐performance liquid chromatography has been applied for the preconcentration and separation of paraquat in a real sample. A mixture of triethylamine and water was used as the switchable‐hydrophilicity solvent. The pH was regulated using carbon dioxide; hence the ratio of the ionized and non‐ionized form of triethylamine could control the optimum conditions. Sodium dodecyl sulfate was utilized as an ion‐pairing agent. The ion‐associate complex formed between the cationic paraquat and sodium dodecyl sulfate was extracted into triethylamine. The separation of the two phases was carried out by the addition of sodium hydroxide, which changed the ionization state of triethylamine. The effects of some important parameters on the extraction recovery were investigated. Under the optimum conditions (500 μL of the extraction solvent, 1 mg sodium dodecyl sulfate, 2.0 mL of 10 mol/L sodium hydroxide, and pH 4), the limit of detection and the limit of quantification were 0.2 and 0.5 μg/L, respectively, with preconcentration factor of 74. The precision (RSD, n  = 10) was  <5%. The recovery of the analyte in environmental and biological samples was in the range of 90.0–92.3%.  相似文献   

4.
By combining molecular modelling and electrochemistry we envision the creation of modified electrodes tailored for a more sensitive and selective detection of a single analyte. In this study we report on a graphite screen printed electrode modified with electropolymerized o‐phenylenediamine, selected by rational design, which promotes the detection of nafcillin (NAF), an antibiotic. Parameters such as monomer concentration, pH and number of electropolymerization cycles were optimized to obtain the highest current signal for the target upon amperometric detection. NAF identification was based on the redox process at +1.1 V (vs pseudo Ag), ascribed to the oxidation of the C‐7 side chain. With the optimized modification protocol, a two‐fold increase in nafcillin signal could be obtained: the calibration plot in 0.1 M Britton‐Robinson buffer pH 4 showed a limit of detection of 80 nM with improved sensitivity and reproducibility (RSD<5 %) compared to the detection at non‐modified electrodes.  相似文献   

5.
《Analytical letters》2012,45(2):299-311
A carbon paste electrode modified with gold nanoparticles (AuMCPE) was used as a highly sensitive sensor for determination of Tyrosine (Tyr), in the presence of an anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous solution. The measurements were carried out by using of differential pulse voltammetry (DPV), cyclic voltammetry (CV), amd chronocoulometry and chronoamperometry methods. The prepared electrode shows voltammetric responses with high sensitivity and selectivity for Tyr in the presence of SDS. The relationship between the oxidation peak current of Tyr and its concentration was obtained linearly and it was 1.0 × 10?7 to 1.0 × 10?5 M with a detection limit of 5.5 × 10?8 M in the absence of SDS. On the other hand the oxidation peak current of Tyr increased significantly at AuMCPE in the presence of SDS and its detection limit was reduced to 2.7 × 10?9 M. The proposed voltammetric approach was also applied to the determination of Tyr concentration in human serum.  相似文献   

6.
A differential pulse voltammetric method was developed for the simultaneous determination of paracetamol, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamol, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamol in the concentration range from 0.5 to 400???M, with a detection limit of 0.13???M (at an S/N of 3). The sensor was successfully applied to the stimultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples.
Figure
1. Gold nanoparticles and organophillic layered double hydroxide modified glassy carbon electrode was fabricated. 2. The modified electrode displayed excellent redox activity towards paracetamol. 3. This electrode was successfully applied to the simultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively  相似文献   

7.
铂纳米颗粒修饰电极对大肠杆菌的电化学快速检测   总被引:2,自引:0,他引:2  
本文采用了电化学沉积法制备了铂纳米颗粒化学修饰电极(PtNP/GCE),并将它应用于大肠杆菌的检测。原理是基于检测大肠杆菌溶液中酶与底物的反应产物,对氨基酚,实现了对大肠杆菌的快速检测。采用了铂纳米颗粒修饰电极,并对检测系统进行优化,提高大肠杆菌的检测灵敏度。大肠杆菌浓度在50—1.0×105cfu/ml与响应电流成良好的线性关系,最低检测限为20 cfu/ml,检测时间在4个小时以内。与传统方法相比,该电化学方法能很好地满足食品安全、环境监控和临床医学等领域中快速检测的要求。  相似文献   

8.
《Electroanalysis》2005,17(22):2037-2042
An investigation is reported on whether the anionic surfactant sodium dodecyl sulfate (SDS) was effective in suppressing electrode fouling by proteins and phospholipids in the square wave voltammetric detection of a range of bioorganic compounds (dopamine, epinephrine, catechol, NADH, uric acid, guanine, and acetaminophen) at a glassy carbon electrode. Albumin, globulin, and phosphatidylethanolamine served as test interferents. For most of the analytes, the interferents caused a significant decrease as well as an anodic shift of the signal. When SDS was added to the measuring solution prior to the interferent, these effects were markedly reduced or eliminated. In contrast, addition of SDS subsequent to the interferent did not always fully reverse the interference effects, and therefore the fouling of the electrode can be irreversible. Depending on the analyte, SDS alone caused either a moderate decrease or an enhancement of the signal, and positive as well as negative peak shifts were seen. However, these effects were generally much smaller in magnitude than those caused by the interferents. SDS is therefore useful as suppressor of adsorption interferences in the voltammetric detection of bioorganic analytes, and matrix effects from surface‐active constituents of the sample are minimized.  相似文献   

9.
A novel dispersive admicelle solid‐phase extraction method based on sodium dodecyl sulfate‐coated Fe3O4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen‐Qinlian oral liquid before high‐performance liquid chromatography. Fe3O4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe3O4 nanoparticles was coated with sodium dodecyl sulfate to form a nano‐sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte‐adsorbed nanoparticles from the sample solution was performed by using Nd‐Fe‐B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe3O4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9–120.3%, relative standard deviations for intra‐ and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen‐Qinlian oral liquids.  相似文献   

10.
Sodium dodecyl sulfate (SDS), an anionic surfactant, is widely used in peptide and protein sample preparation. When the sample is analyzed by matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS), this surfactant can often cause signal suppression. We have previously reported an on‐probe sample preparation method using a suspension of anion‐exchange silica gel and sinapinic acid (i.e., gel‐SA suspension) as a matrix, thereby greatly improving the MALDI signal detection of the protein solutions containing SDS. In this study, we found that a certain amount of SDS enhanced the MALDI signal intensity for protein samples. This effect was also observed when using sodium decyl sulfate and sodium tetradecyl sulfate instead of SDS. Furthermore, this on‐probe sample preparation method using both SDS and the gel‐SA suspension improved the detection limit of protein samples in the MALDI‐MS analysis by about ten‐fold as compared to that of protein samples without SDS and the gel‐SA suspension. This method can be applied not only to the MALDI‐MS analysis of samples containing SDS, but also to the examination of proteins at femtomole levels or insoluble proteins such as membrane proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
《Analytical letters》2012,45(7-8):1100-1110
A modified carbon paste electrode that incorporates the anionic surfactant sodium dodecyl sulfate (SDS) in the paste (SDS-CP) is reported. It is shown that the SDS-CP electrode discriminates effectively between the cationic form of dopamine and the anionic electroactive species existing in biological fluids at the physiological pH. Therefore, a differential pulse voltammetry method has been developed. It has the detection limit comprised in the submicromolar range and the capability to remove the interference of the ascorbic acid and to diminish the interference of the uric acid. The method has been tested with good results on real samples of deproteinized serum.  相似文献   

12.
In this work, an electrochemical DNA biosensor, based on a dual signal amplified strategy by employing a polyaniline film and gold nanoparticles as a sensor platform and enzyme‐linked as a label, for sensitive detection is presented. Firstly, polyaniline film and gold nanoparticles were progressively grown on graphite screen‐printed electrode surface via electropolymerization and electrochemical deposition, respectively. The sensor was characterized by scanning electron microscopy (SEM), cyclic voltammetry and impedance measurements. The polyaniline‐gold nanocomposite modified electrodes were firstly modified with a mixed monolayer of a 17‐mer thiol‐tethered DNA probe and a spacer thiol, 6‐mercapto‐1‐hexanol (MCH). An enzyme‐amplified detection scheme, based on the coupling of a streptavidin‐alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalyzed the hydrolysis of the electroinactive α‐naphthyl phosphate to α‐naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. In this way, the sensor coupled the unique electrical properties of polyaniline and gold nanoparticles (high surface area, fast heterogeneous electron transfer, chemical stability, and ease of miniaturisation) and enzymatic amplification. A linear response was obtained over a concentration range (0.2–10 nM). A detection limit of 0.1 nM was achieved.  相似文献   

13.
《Electroanalysis》2017,29(2):595-601
Polyaniline (PANi) was electro‐synthesized on the surface of screen‐printed carbon electrodes in the presence of sodium dodecyl sulfate (SDS) as a dopant. The complex of aniline and SDS created a conductive (PANi‐SDS) film at lower aniline concentration. The PANi‐SDS film contained negative charge due to the anionic head of SDS. The PANi‐SDS modified electrode was integrated into a poly(dimethylsiloxane) microfluidic chip as an electrochemical sensor for mercury detection. The presence of SDS in the polyaniline film enhanced the possibility of mercury ions uptake, and therefore, increased the peak current of square wave anodic stripping in the mercury detection. The mercury sensor exhibited a dynamic range from 6 to 35 nM with detection limit of 2.4 nM.  相似文献   

14.
Ag nanoparticles were synthesized on the surface of a glassy carbon electrode modified with p‐tert‐butylcalix[4]arene and p‐tert‐butylcalix[6]arene by the deposition of Ag+ at an open circuit potential followed by the electrochemical reduction of the Ag+.The presence of the calixarene layer on the electrode surface controlled the particle size and prevented agglomeration.Cyclic voltam‐metry showed that the Ag nanoparticles on the modified glassy carbon electrode had good catalytic ability for the reduction of flutamide.The effects of calixarene concentration,potential applied for the reduction of Ag+,number of calixarene layers,and p H value on the electrocatalytic activity of the Ag nanoparticles were investigated.The modified electrode had a linear range in differential pulse voltammetry of 10-1000 μmol/L with a detection limit of 9.33 μmol/L for flutamide at an S/N = 3.The method was applied to the detection of flutamide in practical samples.  相似文献   

15.
《Electroanalysis》2018,30(3):571-582
The present study deals with the development of an electrochemical sensor for quantitative determination of Bezafibrate (BZF) based on carbon nanofibers/polyaniline/platinum nanoparticles modified carbon paste electrode (CNF/PANI/Pt/CPE). BZF is a fibric acid derivative and is used largely in the treatment of lipid disorders. The nanocomposite was synthesized by in situ polymerization of aniline using ammonium persulphate and platinum nanoparticles were uniformly decorated on the CNF/PANI surface by reducing hexachloroplatinic acid using sodium borohydride. The electrochemical response of BZF at CNF/PANI/Pt/CPE was studied using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The above study resulted into significant improvement of the electrochemical signal towards the oxidation of BZF, revealing that the oxidation process is highly favorable at the surface of modified electrode. The anodic peak current Ip (μA) is found to be linearly dependent on BZF concentration in the range of 0.025 μM to 100 μM with a detection limit of 2.46 nM. The practical analytical utilities of the sensor were investigated by performing the experiments on synthetic pharmaceutical formulations, human blood serum and urine samples which offered good recovery, suggesting the high efficacy and authenticity of CNF/PANI/Pt/CPE sensor for BZF determination.  相似文献   

16.
Atta NF  Galal A  El-Ads EH 《The Analyst》2012,137(11):2658-2668
A novel sensor of cysteine self-assembled monolayers over gold nanoparticles modified gold electrode has been constructed for the determination of epinephrine in presence of sodium dodecyl sulfate (Au/Au(nano)-CysSDS). Electrochemical investigation and characterization of the modified electrode are achieved using cyclic voltammetry, linear sweep voltammetry, and scanning electron microscopy. The Au/Au(nano)-CysSDS electrode current signal is remarkably stable via repeated cycles and long term stability, due to the strong Au-S bond, compared to the Au/Au(nano) electrode. The catalytic oxidation peak currents obtained from linear sweep voltammetry (LSV) increased linearly with increasing epinephrine concentrations in the range of 2 to 30 μmol L(-1) and 35 to 200 μmol L(-1) with correlation coefficients of 0.9981 and 0.9999 and a limit of detection of 0.294 nmol L(-1) and 1.49 nmol L(-1), respectively. The results showed that Au/Au(nano)-CysSDS can selectively determine epinephrine in the coexistence of a large amount of uric acid and glucose. In addition, a highly selective and simultaneous determination of tertiary mixture of ascorbic acid, epinephrine, and acetaminophen is explored at this modified electrode. Excellent recovery results were obtained for determination of epinephrine in spiked urine samples at the modified electrode. Au/Au(nano)-CysSDS can be used as a sensor with excellent reproducibility, sensitivity, and long term stability.  相似文献   

17.
A sensitive and specific electrochemical immunosensor was developed with α‐fetoprotein (AFP) as the model analyte by using gold nanoparticle label for enzymatic catalytic amplification. A self‐assembled monolayer membrane of mercaptopropionic acid (MPA) was firstly formed on the electrode surface through gold‐sulfur interaction. Monoclonal mouse anti‐human AFP was covalently immobilized to serve as the capture antibody. In the presence of the target human AFP, gold nanoparticles coated with polyclonal rabbit anti‐human AFP were bound to the electrode via the formation of a sandwiched complex. With the introduction of goat anti‐rabbit IgG conjugated with alkaline phosphatase, the dentritical enzyme complex was formed through selective interaction of the secondary antibodies with the colloidal gold‐based primary antibody at the electrode, thus affording the possibility of signal amplification for AFP detection. Current response arising from the oxidation of enzymatic product was significantly amplified by the dentritical enzyme complex. The current signal was proportional to the concentration of AFP from 1.0 ng mL?1 to 500 ng mL?1 with a detection limit of 0.8 ng mL?1. This system could be extended to detect other target molecules with the corresponding antibody pairs.  相似文献   

18.
《Electroanalysis》2018,30(5):943-954
A simple voltammetric nanosensor was described for the highly sensitive determination of antiviral drug Tenofovir. The benzalkonium chloride and silver nanoparticles were associated to build a nanosensor on glassy carbon electrode. Surface characterictics were achieved using scanning electron microscopic technique. The voltammetric measurements were performed in pH range between 1.0 and 10.0 using cyclic, adsorptive stripping differential pulse and adsorptive stripping square wave voltammetry. The linear dependence of the peak current on the square root of scan rates and the slope value (0.770) demonstrated that the oxidation of tenofovir is a mix diffusion‐adsorption controlled process in pH 5.70 acetate buffer. The linearity range was found to be 6.0×10−8–1.0×10−6 M, and nanosensor displayed an excellent detection limit of 2.39×10−9 M by square wave adsorptive stripping voltammetry. The developed nanosensor was successfully applied for the determination of Tenofovir in pharmaceutical dosage form. Moreover, the voltammetric oxidation pathway of tenofovir was also investigated at bare glassy carbon electrode comparing with some possible model compounds (Adenine and Adefovir).  相似文献   

19.
《Electroanalysis》2017,29(2):345-351
A glassy carbon electrode modified with reduced graphene oxide and platinum nanocomposite film was developed simply by electrochemical method for the sensitive and selective detection of nitrite in water. The electrochemical reduction of graphene oxide (GO) efficiently eliminates oxygen‐containing functional groups. Pt nanoparticles were electrochemically and homogeneously deposited on the ErGO surface. Field emission scanning electron microscopy (FE‐SEM), Raman spectroscopy, attenuated total reflectance‐fourier transform infrared spectroscopy (ATR‐FTIR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were used to examine the surface morphology and electrocatalytic properties of the Pt‐ErGO nanocomposite film‐modified electrode surface. The fabricated nitrite sensor showed good electrochemical performance with two linear ranges; one from 5 to 100 µM (R2=0.9995) and the other from 100 to 1000 µM (R2=0.9972) and a detection limit of 0.22 µM. The proposed sensor was successfully applied for the detection of nitrite in tap water samples which proves performance of the Pt‐ErGO nanocomposite films.  相似文献   

20.
本文发展了一种基于纳米金介导生物沉积铂并以铂催化氢还原伏安法进行检测的高灵敏电化学免疫分析新方法。该方法采用夹心免疫分析模式,实现了人免疫球蛋白(HIgG)的测定。首先在聚苯乙烯微孔板中固定羊抗HIgG捕获抗体,HIgG捕获后,碱性磷酸酶标记的HIgG抗体修饰的纳米金探针通过与HIgG的形成的夹心复合物而结合在微孔板上。结合的碱性磷酸酶催化抗坏血酸磷酸酯底物水解产生抗坏血酸,后者在纳米金上介导下还原铂离子沉积于纳米金表面。沉积的金属铂用王水溶解并电富集于玻碳电极上。通过测定铂催化氢还原产生的阴极电流,可实现HIgG的高灵敏分析。催化氢还原电流与HIgG浓度对数在0.1~100ng/ml之间呈线性相关性,检测限达22pg/ml。由于铂催化氢还原的高灵敏度及纳米金介导的生物沉积放大反应,该法具有较高的分析灵敏度,且免疫分析微孔板模式使得该法可同时用于大量样品的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号