首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salidroside is an effective adaptogenic drug extracted from Rhodiola species. In the present study, a simple and efficient method for preparative separation and purification of salidroside from the Chinese medicinal plant Rhodiola rosesa was developed by adsorption chromatography on macroporous resins. The static adsorption isotherms and kinetics of some resins have been determined and compared for preparative separation of salidroside. According to our results, HPD‐200 resin is the most appropriate medium for the separation of salidroside and its adsorption data fit the Langmuir isotherm well. Dynamic adsorption and desorption were carried out in glass columns packed with HPD‐200 to optimize the separation process. After two adsorption and desorption runs, a product with a salidroside content of 92.21% and an overall recovery of 48.82% was achieved. In addition, pure lamellar crystals of salidroside with a purity of 99.00% could be obtained from this product. Its molecular weight was determined by an ESI‐MS method. The simple purification scheme avoids toxic organic solvents used in silica gel and high‐speed counter‐current chromatographic separation processes and thus increases the safety of the process and can be helpful for large‐scale salidroside production from Rhodiola rosea or other plant extracts.  相似文献   

2.
Jia G  Lu X 《Journal of chromatography. A》2008,1193(1-2):136-141
In present study, the performance and separation characteristics of five macroporous resins for the enrichment and purification of asiaticoside and madecassoside from Centella asiatica extracts have been evaluated. The adsorption and desorption properties of total triterpene saponins (80% purity) on macroporous resins including HPD100, HPD300, X-5, AB-8 and D101 have been compared. According to our results, HPD100 offered higher adsorption and desorption capacities and higher adsorption speed for asiaticoside and madecassoside than other resins. Column packed with HPD100 resin was used to perform dynamic adsorption and desorption tests to optimize the separation process of asiaticoside and madecassoside from C. asiatica extracts. After the treatment with gradient elution on HPD100 resin, the content of madecassoside in the product increased from 3.9 to 39.7%, and the recovery yield was 70.4%; for asiaticoside the content increased from 2.0 to 21.5%, and the recovery yield was 72.0%. The results showed that HPD100 resin revealed a good ability to separate madecassoside and asiaticoside, and the method can be referenced for the separation of other triterpene saponins from herbal raw materials.  相似文献   

3.
Salvianic acid A (also known as danshensu) is a plant‐derived polyphenolic acid, and has a variety of physiological and pharmacological activities. Our laboratory previously constructed an unprecedented artificial biosynthetic pathway in Escherichia coli and established the fermentation process to produce salvianic acid A. Here, we developed an efficient method for separating salvianic acid A from the fermentation broth of engineered Escherichia coli by macroporous resins. Among ten tested macroporous resins, the static and dynamic adsorption/desorption experiments demonstrated that X5 resin was the best to separate salvianic acid A from fermentation broth. Other parameters during static and dynamic procedures were also investigated. Under the optimum separation conditions, the average adsorption capacity of SAA were 10.66±0.54 mg/g dry resin and the desorption ratio was 85.6±4.1%. The purity and recovery yield of salvianic acid A in the final dry product were 90.2±1.5 and 81.5±2.3%, respectively. The results show that adsorption separation with macroporous resin X5 was an efficient method to prepare salvianic acid A from fermentation broth. This work will benefit the development and application of plant‐derived salvianic acid A and its derivatives.  相似文献   

4.
Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium‐pressure liquid chromatography combined with macroporous resin and reversed‐phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high‐performance liquid chromatography. After fractionation using HPD‐100 column chromatography, a 30% ethanol fraction was selected based on high‐performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds—deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin‐1‐O‐β‐d‐ gentiobioside, and geniposide—were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high‐performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large‐scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine.  相似文献   

5.
A green and efficient method for large‐scale preparation of glycyrrhizic acid from licorice roots was developed by combination of polyamide and macroporous resin. The entire preparation procedure consisted of two simple separation steps. The first step is to use polyamide resin to remove licorice flavoniods from the licorice crude extract. Subsequently, various macroporous resins were tried to purify glycyrrhizic acid, and HPD‐400 showed the most suitable adsorption and desorption properties. Under the optimized conditions, a large‐scale preparation of glycyrrhizic acid from licorice roots was carried out. A 20 kg raw material produced 0.43 kg of glycyrrhizic acid using green aqueous ethanol as the solvent. The purity of glycyrrhizic acid was increased from 11.40 to 88.95% with a recovery of 76.53%. The proposed method may be also extended to produce large‐scale other triterpenoid saponins from herbal materials.  相似文献   

6.
采用静态吸附法考察了D101、AB-8、NKA-2、NKA-9、HPD 100、HPD600等6种大孔吸附树脂对(R,S)-告依春的吸附及解吸性能,筛选出效果最佳的AB-8树脂,并对其进行动态考察.最佳富集条件为:上样液pH 6,生药质量-体积浓度为0.200g/mL,解吸液为2BV量70%乙醇,在优化条件下(R,S)-告依春在浸膏中含量可从0.76%提高到12.48%.结果表明,AB-8型大孔吸附树脂可用来从板蓝根水提取液中富集(R,S)-告依春.  相似文献   

7.
The separation and purification of hydroxytysol and oleuropein from Olea europaea L. (olive) using a macroporous resin with a novel solvent system was systematically investigated. Static adsorption experiments with BMKX–4 resin revealed that the experimental data of both hydroxytysol and oleuropein fitted best to the pseudo‐second‐order kinetic and Freundlich isotherm models. The thermodynamic parameters indicated spontaneous and exothermic adsorption processes. The novel solvent system, composed of n–hexane:ethyl acetate:methanol:water in a (v/v/v/v) ratio of 1:9:1:9, had two phases (upper and lower). The separation and purification parameters of hydroxytysol and oleuropein were optimized using dynamic adsorption/desorption on a column packed with BMKX–4 resin. The effects of flow rates and volumes of the upper and lower phases on the separation efficiency were systematically studied. Under optimal conditions, the fraction of hydroxytysol in the final product increased by 6.34‐fold from 0.46 to 2.96%, with a yield rate of 88.58% w/w, while that of oleuropein increased 4.17‐fold from 11.40 to 47.59%, with a 93.31% w/w yield rate. These results may be help in selecting a suitable eluent for improved separation of macroporous adsorption resins.  相似文献   

8.
As a well‐known traditional Chinese medicine, Ziziphi Spinosae Semen has been used for treating anxiety and insomnia for a long time. Spinosin, the main active C‐glycoside flavonoid in Ziziphi Spinosae Semen, has attracted much attention because of its many pharmacological activities including strong hypnotic effects, anxiolytic‐like effects, and so on. In the present work, high‐purity spinosin was separated from Ziziphi Spinosae Semen using the HPD‐300 resin followed by preparative high‐performance liquid chromatography. The adsorption kinetics curve of spinosin on the HPD‐300 resin was studied and fitted well by the pseudo‐second‐order equation. The adsorption isotherms were also constructed and low temperature favored the adsorption reaction. The separation parameters were optimized using dynamic adsorption and desorption tests. After a one‐run treatment with HPD‐300 resin, the concentration of spinosin increased 11.8‐fold from 0.99 to 11.7% with a recovery yield of 80.4%. Furthermore, the purity of spinosin could surpass above 98% after separation by preparative high‐performance liquid chromatography and recrystallization with a recovery yield of 72.6%. The developed method was effective and suitable for the large‐scale preparation of spinosin. Moreover, it was confirmed that HPD‐300 resin could enable good selection for the enrichment of flavonoids from different plants.  相似文献   

9.
The separation of polar compounds by high‐speed countercurrent chromatography is still regarded as a challenge. In this study, an efficient strategy for the separation of three polar compounds from Rheum tanguticum has been successfully conducted by using high‐speed countercurrent chromatography. X‐5 macroporous resin chromatography was used for the fast enrichment of the target compounds. Then, the target fraction was directly introduced into high‐speed countercurrent chromatography for separation using ethyl acetate/glacial acetic acid/water (100:1:100, v/v/v) as the solvent system. Consequently, three polar compounds including gallic acid, catechin, and gallic acid 4‐O‐β‐d ‐(6′‐O‐galloyl) glucoside were obtained with purities higher than 98%. The results showed glacial acetic acid could be such an appropriate regulator for the ethyl acetate/water system. This study provides a reference for the separation of polar compounds from natural products by high‐speed countercurrent chromatography.  相似文献   

10.
The Echinacea‐derived immunostimulator and HIV‐1 integrase inhibitor (−)‐chicoric acid (=2,3‐bis{[3‐(3,4‐dihydroxyphenyl)‐1‐oxoprop‐2‐enyl]oxy}butanedioic acid; 1a ) was conveniently prepared via a silane‐promoted Pd‐mediated chemoselective hydrogenolysis of its perbenzylated derivative 12a , which was generated from an efficient and reliable carbodiimide‐mediated coupling reaction between the caffeic acid dibenzyl ether derivative 7 and commercially available (+)‐dibenzyl L ‐tartrate ( 9a ). The other naturally occurring dextrorotatory chicoric acid ( 1b ) can be similarly prepared.  相似文献   

11.
Abstract

The present study investigated the adsorption and inhibition behavior of leaf extract of Tephrosia Purpurea (T. purpurea) on mild steel corrosion in 1?N H2SO4 solution using electrochemical and surface morphological methods. Techniques adopted for electrochemical studies were Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) technique; and surface morphological studies were carried out using Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The leaf extract of T. purpurea was characterized using UV-Visible spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance Spectroscopy (NMR) and Gas Chromatography – Mass Spectrometry (GCMS). The results obtained from electrochemical studies exhibited the potential of T. purpurea as good corrosion inhibitor. And, it was found that, the inhibition efficiency (I.E in %) increases with increase in concentration of the inhibitor molecules, the optimum inhibitor concentration observed was 300?ppm and the inhibition efficiency of 93% was observed at this inhibitor concentration. Above 300?ppm, there was not much changes in inhibition efficiency. Polarization studies provided the information that the inhibition is of mixed type and EIS confirmed that the corrosion process is controlled by single charge transfer mechanism. And, it was obtained that, the adsorption of inhibitor molecules obeys Langmuir adsorption isotherm. The inhibition is mainly by the adsorption of inhibitor molecules on the mild steel electrode surface, which was confirmed by FT-IR, SEM and AFM studies. Through all the experimental results, it can be arrived that, the leaf extract of T. purpurea performed as a good corrosion inhibitor for mild steel in 1?N sulfuric acid medium.  相似文献   

12.
Molecularly imprinted polymers of glycyrrhizic acid were prepared by solution polymerization using glycyrrhizic acid as the template molecule, N‐vinypyrrolidone as functional monomer, N ,N‐methylene bisacrylamide as cross‐linker and ascorbic acid and hydrogen peroxide as initiators. Focused on the adsorption capacity and separation degree of the polymer to glycyrrhizic acid, the effects of the monomers, crosslinker and initiators were investigated and optimized. Finally, the structure of the polymer was characterized by using Fourier transform infrared spectroscopy and scanning electron microscopy. To obtain objective results, non‐imprinted molecular polymers prepared under the same conditions were also characterized. The adsorption quantity of the polymer was measured by high‐performance liquid chromatography. Under the optimum conditions, the maximum adsorption capacity of glycyrrhizic acid approached 15 mg/g, and the separation degree was as high as 2.5. The adsorption kinetics could be well described by a pseudo‐first‐order model, while the thermodynamics of the adsorption process could be described by the Langmuir model.  相似文献   

13.
An efficient separation process of flavonoid from Taxus wallichiana var. mairei remainder extracts free of taxoids was developed in this study. AB‐8 macroporous resin and polyamide resin offered the fine adsorption capacity, and its adsorption rate at 30°C fitted well to the Langmuir and Freundich isotherms. Resin dynamic adsorption and desorption experiments were conducted to optimize the separation process of total flavonoids from T. wallichiana var. mairei remainder extracts free of taxoids. The optimum parameters for adsorption by AB‐8 resin were as follows: (1) the concentration of flavonoids in a sample solution of 5.61 mg/mL with a processing volume of 2 bed volume (BV) (60 mL); (2) for desorption, ethanol–water (80:20, v/v), with 6 BV as an eluent at a flow rate of 2 BV/h. After a one‐run treatment with AB‐8 resin, the content of flavonoids was increased 5.10‐fold from 4.05 to 20.65%. The optimum parameters for adsorption by polyamide resin were as follows: processing volume of 2 BV (30 mL); for desorption, ethanol–water (70:30, v/v), with 8 BV as an eluent at a flow rate of 2 BV/h. After one‐run treatment with polyamide resin, the content of total flavonoids increased from 20.65 to 65.21%. The method will provide a potential approach for large‐scale separation and purification of flavonoid for its wide pharmaceutical use.  相似文献   

14.
In present study, the performance and separation characteristics of 21 macroporous resins for the enrichment and purification of deoxyschizandrin and γ-schizandrin, the two major lignans from Schisandra chinensis extracts, were evaluated. According to our results, HPD5000, which adsorbs by the molecular tiers model, was the best macroporous resin, offering higher adsorption and desorption capacities and higher adsorption speed for deoxyschizandrin and γ-schizandrin than other resins. Columns packed with HPD5000 resin were used to perform dynamic adsorption and desorption tests to optimize the technical parameters of the separation process. The results showed that the best adsorption time is 4 h, the rate of adsorption is 0.85 mL/min (4 BV/h) and the rate of desorption is 0.43 mL/min (2 BV/h). After elution with 90% ethanol, the purity of deoxy-schizandrin increased 12.62-fold from 0.37% to 4.67%, the purity of γ-schizandrin increased 15.8-fold from 0.65% to 10.27%, and the recovery rate was more than 80%.  相似文献   

15.
Cichoric acid and caftaric acid are the main phenolic compounds in Echinacea purpurea tops. The level of these phenolic compounds in E. purpurea extracts is affected by different factors such as seasonal variations, drying methods, extraction methods, and growing location of the plant. HPLC analysis of caffeic acid derivatives in extracts of Echinacea purpurea (Cultivar) aerial parts, produced by boiling water extraction and ethanol-water extraction methods, showed various levels of the derivatives. Our findings revealed that the Iranian cultivated E. purpurea had a high level of cichoric acid (3.5–5.7 %). Caftaric acid was also the main phenolic compound in E. purpurea tops (3.1–4.5 %). After 2 h of boiling water extraction, the level of cichoric acid was 5.7 %, whereas the level of this acid in 60:40 ethanol-water extraction did not exceed 3.9 %. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 150–152, March–April, 2008.  相似文献   

16.
10‐Deacetylbaccatin III, an important semisynthetic precursor of paclitaxel and docetaxel, can be extracted from Taxus wallichiana Zucc. A process for the isolation and purification of 10‐deacetylbaccatin III ( 1 ), baccatin III ( 2 ), and 7β‐xylosyl‐10‐deacetyltaxol ( 3 ) from the leaves and branches of Taxus wallichiana Zucc. via macroporous resin column chromatography combined with high‐speed countercurrent chromatography or reversed‐phase flash chromatography was developed in this study. After fractionation by macroporous resin column chromatography, 80% methanol fraction was selected based on high‐performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis. A solvent system composed of n‐hexane, ethyl acetate, methanol, and water (1.6:2.5:1.6:2.5, v/v/v/v) was used for the high‐speed countercurrent chromatography separation at a flow rate of 2.5 mL/min. The reversed‐phase flash chromatography separation was performed using methanol/water as the mobile phase at a flow rate of 3 mL/min. The high‐speed countercurrent chromatography separation produced compounds 1 (10.2 mg, 94.4%), 2 (2.1 mg, 98.0%), and 3 (4.6 mg, 98.8%) from 100 mg of sample within 110 min, while the reversed‐phase flash chromatography separation purified compounds 1 (9.8 mg, 95.6%) and 3 (4.9 mg, 97.9%) from 100 mg of sample within 120 min.  相似文献   

17.
An integrated procedure was developed to extract and purify total flavonoids from Toona sinensis leaves for the first time, in which pressurized liquid extraction was performed in tandem with HPD100 macroporous resin column. Consequently, the total flavonoids can be extracted using 10% EtOH, and the recovery and purity of total flavonoids was 71.05% and 66.60%. Moreover, products of high quality were obtained in an environmentally friendly process with lower consumption of time and solvent. The results demonstrated that the integrated extraction-adsorption procedure was an efficient process for the preparation of total bioactive flavonoids from Toona sinensis leaves.  相似文献   

18.
两种大孔吸附树脂结合分离纯化京尼平甙   总被引:1,自引:0,他引:1  
比较了H103、NKA-II、HPD100A、HPD400A及D141等5种大孔吸附树脂对栀子提取液中栀子黄色素和京尼平甙的吸附性能。在通过静态吸附实验研究其吸附量、吸附动力学特征的基础上,确定了用H103和HPD100A两种非极性大孔树脂进行京尼平甙的分离纯化,并确定了工艺参数。首先用H103树脂吸附京尼平甙,用蒸馏水洗脱杂质,再用一定浓度的乙醇洗脱;所得的京尼平甙洗脱液再用HPD100A树脂吸附,进一步除去栀子黄色素等杂质,得到的京尼平甙纯度达到81.3%,回收率为88.5%。  相似文献   

19.
This paper reports the application of a multiphase dispersive extraction method to the extraction, separation, and determination of the phenolic acids from Salicornia herbacea L. using silica‐confined ionic liquids as sorbents. A suitable sorbent for phenolic acid extraction and separation was first identified based on the adsorption behavior of the phenolic acids on different silica‐confined ionic liquids. The sample was then mixed with the optimized sorbent and solvent to achieve multiphase dispersive extraction. The sample/sorbent ratio was optimized using theoretical calculations from the adsorption isotherm and experiments. After transferring the supernatant to an empty cartridge, an SPE process was used to separate the three phenolic acids from the other interference. Through systematic optimization, the optimal conditions produced high recovery rates of protocatechuic acid (91.20%), caffeic acid (94.03%), and ferulic acid (91.33%). Overall, the proposed method is expected to have wide applicability.  相似文献   

20.
In the present study, combined chromatographic strategy based on macroporous resin, high‐speed counter‐current chromatography and preparative high‐performance liquid chromatography for systematic separation of antioxidants from crude samples guided by high‐performance liquid chromatography with 1,1‐diphenyl‐2‐picrylhydrazyl has been successfully established. Based on this strategy, seven antioxidants including isorugosin A, β‐1,2,3,6‐tetragalloyl‐D ‐glucose, chebulinic acid, 1,2,3,4,6‐penta‐O‐galloyl‐β‐D‐glucose, chebulagic acid, ethyl gallate, and gallic acid were obtained from the fruit of Terminalia billerica. First, high‐performance liquid chromatography with 1,1‐diphenyl‐2‐picrylhydrazyl experiment showed the presence of seven main antioxidants in the crude extract of the fruit of Terminalia billerica. Then, a macroporous resin column chromatography method was developed for the enrichment of these seven antioxidants. Finally, an efficient method based on high‐speed counter‐current chromatography and preparative high‐performance liquid chromatography was developed for the separation of these antioxidants. In the selection of solvent systems, it was found that acetic acid could be a good regulator for modifying the partition coefficient values of tannins. The present study provides a reference for systematic separation of antioxidants from crude samples. Considering the general existence of antioxidants in crude samples, this combined chromatographic strategy might lead to broader application prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号