首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sample pretreatment techniques or preconcentration constitute a very important step before the analysis of environmental, clinical, pharmaceutical, and other complex samples. Thanks to extraction techniques it is possible to achieve higher method sensitivities and selectivities. Miniaturization microextraction methods make them more environmentally friendly and only small amounts of samples are required. In the past 30 years, a number of microextraction methods have been developed and used and are documented in thousands of articles. Many reviews have been written focusing on their use in specified professional fields or on the latest trends. Unfortunately, no uniform nomenclature has been introduced for these methods. Therefore, this review attempts to classify all the essential microextraction techniques and describes their advantages, disadvantages, and the latest innovations. The methods are divided into two main groups: single drop and sorbent‐based techniques according to the type of extraction phase.  相似文献   

2.
Advances in the area of sample preparation are significant and have been growing significantly in recent years. This initial step of the analysis is essential and must be carried out properly, consisting of a complicated procedure with multiple stages. Consequently, it corresponds to a potential source of errors and will determine, at the end of the process, either a satisfactory result or a fail. One of the advances in this field includes the miniaturization of extraction techniques based on the conventional sample preparation procedures such as liquid‐liquid extraction and solid‐phase extraction. These modern techniques have gained prominence in the face of traditional methods since they minimize the consumption of organic solvents and the sample volume. As another feature, it is possible to reuse the sorbents, and its coupling to chromatographic systems might be automated. The review will emphasize the main techniques based on liquid‐phase microextraction, as well as those based upon the use of sorbents. The first group includes currently popular techniques such as single drop microextraction, hollow fiber liquid‐phase microextraction, and dispersive liquid‐liquid microextraction. In the second group, solid‐phase microextraction techniques such as in‐tube solid‐phase microextraction, stir bar sorptive extraction, dispersive solid‐phase extraction, dispersive micro solid‐phase microextraction, and microextraction by packed sorbent are highlighted. These approaches, in common, aim the determination of analytes at low concentrations in complex matrices. This article describes some characteristics, recent advances, and trends on miniaturized sample preparation techniques, as well as their current applications in food, environmental, and bioanalysis fields.  相似文献   

3.
An efficient on‐site extraction technique to determine carcinogenic heterocyclic aromatic amines in seawater has been reported. A micro‐solid‐phase extraction device placed inside a portable battery‐operated pump was used for the on‐site extraction of seawater samples. Before on‐site applications, parameters that influence the extraction efficiency (extraction time, type of sorbent materials, suitable desorption solvent, desorption time, and sample volume) were investigated and optimized in the laboratory. The developed method was then used for the on‐site sampling of heterocyclic aromatic amines determination in seawater samples close to distillation plant. Once the on‐site extraction completed, the small extraction device with the analytes was brought back to the laboratory for analysis using high‐performance liquid chromatography with fluorescence detection. Based on the optimized conditions, the calibration curves were linear over the concentration range of 0.05–20 μg/L with correlation coefficients up to 0.996. The limits of detection were 0.004–0.026 μg/L, and the reproducibility values were between 1.3 and 7.5%. To evaluate the extraction efficiency, a comparison was made with conventional solid‐phase extraction and it was applied to various fortified real seawater samples. The average relative recoveries obtained from the spiked seawater samples varied in the range 79.9–95.2%.  相似文献   

4.
Thionins belong to a family of cysteine‐rich, low‐molecular‐weight (~5 KDa) biologically active proteins in the plant kingdom. They display a broad cellular toxicity against a wide range of organisms and eukaryotic cell lines. Thionins protect plants against different pathogens, including bacteria and fungi. A highly selective solid‐phase extraction method for plant thionins is reported deploying aluminum silicate (3:2 mullite) powder as a sorbent in extraction columns. Mullite was shown to considerably improve selectivity compared to a previously described zirconium silicate embedded poly(styrene‐co‐divinylbenzene) monolithic polymer. Due to the presence of aluminum(III), mullite offers electrostatic interactions for the selective isolation of cysteine‐rich proteins. In comparison to zirconium(IV) silicate, aluminum(III) silicate showed reduced interactions towards proteins which resulted into superior washings of unspecific compounds while still retaining cysteine‐rich thionins. In the presented study, European mistletoe, wheat and barley samples were subjected to solid‐phase extraction analysis for isolation of viscotoxins, purothionins and hordothionins, respectively. Matrix‐assisted laser desorption/ionization time of flight mass spectroscopy was used for determining the selectivity of the sorbent toward thionins. The selectively retained thionins were quantified by colorimetric detection using the bicinchoninic acid assay. For peptide mass‐fingerprint analysis tryptic digests of eluates were examined.  相似文献   

5.
Sample preparation is one of the crucial steps in the analytical chemistry including human biomonitoring studies. Although there are several traditional approaches available, solid‐phase microextraction is emerged as one of the pioneering techniques due to its simplicity, rapidness, wide applicability, and miniaturization of traditional sample preparation (e.g., use of less or no organic solvents). There are few earlier review articles available on the advancements in solid‐phase microextraction and its use for the measurement of environmental chemicals in various types of environmental samples. However, a collective information on applicability and current usage of solid‐phase microextraction for the human biomonitoring of environmental chemicals are scarce, nonetheless, rising demands on innovative analytical approaches for human biomonitoring studies. Hence, in this review article, we covered the application of solid‐phase microextraction as extraction/purification methods for more than 15 classes of environmental chemicals to assess their respective exposure levels and associated health outcomes in various human population reported across the globe. Further, a detailed discussion on various types of matrix used, nature of coupled analytical instrumentations, and limitations and future perspectives of solid‐phase microextraction for human biomonitoring studies is presented in this review.  相似文献   

6.
A temperature‐controlling device for in‐tube solid‐phase microextraction was developed based on thermoelectric cooling and heating. This device can control the temperature of the capillary column from 0 to 100°C by applying a voltage to a Peltier cooler or stainless steel tube. The extraction temperatures for angiotensin I, propranolol, and ranitidine were optimized. In all cases, setting the temperature to 10°C for extraction achieved the best extraction efficiency. Desorption showed minimum peak broadening at 70°C, contributing to better chromatographic performance. Propranolol was selected as a model compound to compare the performance of temperature‐controlled in‐tube solid‐phase microextraction at optimized conditions. Calibration curves exhibited good linearity (R2 > 0.999) over the studied range, and the limit of detection and limit of quantification were about three times lower than those obtained at standard conditions (30°C extraction and desorption).  相似文献   

7.
A novel plate‐like nano‐sorbent based on copper/cobalt/chromium layered double hydroxide was synthesized by a simple coprecipitation method. The synthesized nanoparticels were introduced into a stainless steel cartridge using a dry packing method. Then, the packed cartridge was introduced as a novel on‐line “packed in‐tube” configuration and followed by high performance liquid chromatography for the determination of trace amounts of ?9‐tetrahydrocannabinol from biological samples and cannabis leaves. The as‐prepared sorbent exhibited long lifetime, good chemical stability, and high anion‐exchange capacity. Several important factors affecting the extraction efficiency, such as extraction and desorption times, pH of the sample solution and flow rates of the sample and eluent solutions, were investigated and optimized. Under optimized conditions, this method showed good linearity for ?9‐tetrahydrocannabinol in the ranges of 0.09–500, 0.3–500, and 0.4–500 µg/L with coefficients of determination of 0.9999, 0.9991, and 0.9994 in water, serum and plasma samples, respectively. The inter‐ and intra‐assay precisions (n = 3) were respectively in the ranges of 1.8–4.6% and 1.9–4.0% at three concentration levels of 10, 50, and 100 µg/L. The limits of detection were also in the range of 0.02–0.1 µg/L.  相似文献   

8.
Yohimbine is a novel compound for the treatment of erectile dysfunction derived from natural products, and pharmacokinetic study is important for its further development as a new medicine. In this work, we developed a novel PEEK tube‐based solid‐phase microextraction (SPME)–HPLC method for analysis of yohimbine in plasma and further for pharmacokinetic study. Poly (AA‐EGDMA) was synthesized inside a PEEK tube as the sorbent for microextraction of yohimbine, and parameters that could influence extraction efficiency were systematically investigated. Under optimum conditions, the PEEK tube‐based SPME method exhibits excellent enrichment efficiency towards yohimbine. By using berberine as internal standard, an online SPME‐HPLC method was developed for analysis of yohimbine in human plasma sample. The method has wide linear range (2–1000 ng/mL) with an R 2 of 0.9962; the limit of detection was determined and was as low as 0.1 ng/mL using UV detection. Finally, a pharmacokinetic study of yohimbine was carried out by the online SPME‐HPLC method and the results have been compared with those of reported methods.  相似文献   

9.
A novel infrared‐assisted extraction coupled to headspace solid‐phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane‐divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water‐bath heating and nonheating extraction methods, the extraction efficiency of infrared‐assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above‐mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost‐effective, and highly efficient method, the infrared‐assisted extraction coupled to headspace solid‐phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics.  相似文献   

10.
This study described an automated online method for the simultaneous determination of 8‐isoprostane, 8‐hydroxy‐2′‐deoxyguanosine, and 3‐nitro‐l ‐tyrosine in human urine. The method involves in‐tube solid‐phase microextraction using a Carboxen 1006 PLOT capillary column as an extraction device, followed by liquid chromatography with tandem mass spectrometry using a CX column and detection in the negative/positive switching ion‐mode by multiple reaction monitoring. Using their stable isotope‐labeled internal standards, each of these oxidative stress biomarkers showed good linearity from 0.02 to 2.0 ng/mL. Their detection limits (S/N = 3) were 3.4–21.5 pg/mL, and their intra‐ and inter‐day precisions (relative standard deviations) were >3.9 and 6.5% (= 5), respectively. This method was applied successfully to the analysis of urine samples, without any other pretreatment and interference peaks.  相似文献   

11.
Glycosides are a kind of highly important natural aromatic precursors in tobacco leaves. In this study, a novel HKUST‐1‐coated monolith dip‐it sampler was designed for the fast and sensitive analysis of trace glycosides using direct analysis in real‐time mass spectrometry. This device was prepared in two steps: in situ polymerization of monolith in a glass capillary of dip‐it and layer‐by‐layer growth of HKUST‐1 on the surface of monolith. Sufficient extraction was realized by immersing the tip to solution and in situ desorption was carried out by plasma direct analysis in real time. Compared with traditional solid‐phase microextraction protocols, sample desorption was not needed anymore, and only extraction conditions were needed to be optimized in this method, including the gas temperature of direct analysis in real time, extraction time, and CH3COONH4 additive concentration. This method enabled the simultaneous detection of six kinds of glycosides with the limits of detection of 0.02–0.05 μg/mL and the linear ranges covering two orders of magnitude with the limits of quantitation of 0.05–0.1 μg/mL. Moreover, the developed method was applied for the glycosides analysis of three tobacco samples, which only took about 2 s for every sample.  相似文献   

12.
We report the fabrication of an anion‐exchange monolithic column in a stainless‐steel chromatographic column (10 mm × 2.1 mm i.d.) using [2‐(acryloyloxy) ethyl]trimethylammonium chloride as the monomer and ethylene dimethacrylate as the crosslinker. The prepared monolith was developed as the adsorbent for the on‐line solid‐phase extraction of salicylic acid in various animal‐origin foodstuffs combined with liquid chromatography and tandem mass spectrometry. The monolith was characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, nitrogen adsorption analysis, and elemental analysis. Potential factors affecting the on‐line solid‐phase extraction and liquid chromatography with tandem mass spectrometry analysis were studied in detail. Under the optimized conditions, the total analysis time including cleanup and liquid chromatography with tandem mass spectrometry separation was 17 min. The developed method gave the linear range of 15–750 μg/kg, detection limits (S/N = 3) of 5 μg/kg, and quantification limits (S/N = 10) of 15 μg/kg. The recoveries obtained by spiking 10, 20, and 100 μg/kg of salicylic acid in the animal‐origin food samples were in the range of 85.2–98.4%. In addition, the monolith was stable enough for 550 extraction cycles with the precision of peak area ≤11.6%.  相似文献   

13.
Natural cotton fiber was applied as a green extraction material for in‐tube solid‐phase microextraction. Cotton fibers were characterized by scanning electron microscope. A bundle of cotton fibers (685 mg, 20 cm) was directly packed into a polyetheretherketone tube (i.d. 0.75 mm) to get the extraction device. It was connected into high performance liquid chromatography, building an online extraction and dectection system. Through the online analysis system, several polycyclic aromatic hydrocarbons were used as the targets to evaluate the extraction performace of the device. In order to get high extraction efficiency and sensitivity, the extraction and desorption conditions were optimized. Under the optimum conditions, the sensitive analysis method was established, and provided low limits of detection of 0.02 and 0.05 μg/L, good linearity ranges of 0.06–15 and 0.16–15 μg/L, as well as high enrichment factors of 176–1868. The method was applied to the online determination of trace polycyclic aromatic hydrocarbons in snow water and river water, and the relative recoveries corresponding to 2 and 5 μg/L were in the range of 80–116%. The repeatability of extraction and preparation of the device was investigated and the relative standard deviations (n = 3) were less than 3.6 and 5.2%.  相似文献   

14.
A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid‐phase extraction assisted reversed‐phase dispersive liquid–liquid microextraction based on solidification of floating organic droplet combined with ion‐pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid‐phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0–100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10–100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements.  相似文献   

15.
16.
A method for the extraction and determination of methylmercury (MeHg) in solid matrices is presented. Combining the advantages of two extraction techniques—subcritical water extraction (subWE) and solid‐phase microextraction (SPME)—selective separation of MeHg from soils is possible. The procedure is based on extraction with subcritical water without using organic solvents, followed by in situ aqueous‐phase derivatization with sodium tetraethylborate and headspace SPME with a silica fiber coated with poly(dimethylsiloxane). The optimization of the extraction parameters is described. The identification and quantification of the extracted alkylmercury compounds from spiked soil samples is performed by GC–MS after thermal desorption. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, a novel ‘fiber‐in‐tube’ configuration was applied to electrochemically controlled fiber‐in‐tube solid‐phase microextraction of antipsychotic drugs (perphenazine and chlorpromazine) from biological samples. To prepare an electrochemically controlled fiber‐in‐tube solid‐phase microextraction column, first eight stainless‐steel wires were placed into the stainless‐steel column. Then, a nanostructured Cu‐Cr‐Al ternary layered double hydroxide/polythiophene coating was prepared on the inner surface of the stainless‐steel tube and on the surfaces of the stainless‐steel wires by a facile in situ electrodeposition method. The nanostructured coating exhibited enhanced long lifetime, good mechanical stability, high porosity, and large specific surface area compared with polythiophene and Cu‐Cr‐Al layered double hydroxide coatings. Under the optimal conditions, the limits of detection were in the range of 0.07–0.8 μg/L. This method showed good linearity for perphenazine and chlorpromazine in the ranges of 0.3–300 and 0.2–300 μg/L, respectively, with coefficients of determination more than 0.9982. The inter‐ and intra‐assay precisions (RSD%, n = 3) were in the ranges of 3.0–5.1 and 2.5–4.5% at three concentration levels of 5, 25 and 50 μg/L, respectively. Finally, the method was applied for the analysis of the drugs in human urine and plasma samples.  相似文献   

18.
A simple, selective, and accurate ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method was established and validated for the efficient separation and quantification of polyurethane amine catalysts in polyether polyols. Amine catalysts were primarily separated in polyether polyol‐based sample by solid‐phase extraction, and further baseline separated on a reversed‐phase/cation‐exchange mixed‐mode column (SiELC Primesep™ 200) using 0.1% trifluoroacetic acid/acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.2 mL/min. High‐resolution quadrupole time‐of‐flight mass spectrometry analysis in electrospray ionization positive mode allowed the identification as N,N′‐bis[3‐(dimethylamino)propyl]urea, N‐[2‐(2‐dimethylaminoethoxy)ethyl]‐N‐methyl‐1,3‐propanediamine, and N,N,N′,N′‐tetramethyldipropylenetriamine. The method was validated and presented good linearity for all the analytes in blank matrices within the concentration range of 0.20–5.0 or 0.1–2.0 μg/mL with the correlation coefficients (R2) ranging from 0.986 to 0.997. Method recovery ranged within 81–105% at all three levels (80, 100, and 120% of the original amount) with relative standard deviations of 1.0–6.2%. The limits of detection were in the range of 0.007–0.051 μg/mL. Good precision was obtained with relative standard deviation below 3.2 and 0.72% for peak area and retention time of three amines, respectively.  相似文献   

19.
Modified stainless‐steel wires with a layer of polyaniline conductive polymer were coated by electrochemical deposition with Zn/Al layered double hydroxide to make solid‐phase microextraction fibers. The coating layer was also electrochemically deposited on the inner surface of a stainless‐steel tube. Then, ten prepared fibers were put inside the inner coated tube to make a fiber‐in‐tube solid phase microextraction device. The device was applied for the extraction of caffeine (1,3,7‐trimethylxanthine) from domestic wastewater samples. Extraction conditions including extraction and desorption times, pH and ionic strength of the sample solution, and content of the organic desorption solvent were investigated and optimized. Under the optimized conditions, the fiber‐in‐tube solid phase microextraction exhibited excellent extraction efficiency toward caffeine. The precision of the method was evaluated. Average relative standard deviation of 5.7% (n = 6) for intraday analysis and 8.3% (n = 5) for interday analysis was obtained. The limits of detection and limits of quantification of the method (at signal to noise ratio of 3 and 10) were obtained as 0.14 and 0.37 ng/mL, respectively. The current study can provide new prospective applications of layered double hydroxide conductive polymer fiber coatings.  相似文献   

20.
An ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid‐phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method was compared with the microwave‐assisted extraction coupled to headspace solid‐phase microextraction and headspace solid‐phase microextraction methods. More types of volatile components were obtained by using the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction technique was a simple, time‐saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号