首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over the past few decades, toxic and highly volatile hydrazine derivatives have been the main fuel choices for liquid bipropellants, especially in traditional hypergolic rocket engines. The search for new hypergolic fuels as replacements for hydrazine derivatives is of great interest to researchers. In this study, a series of N‐alkylimidazole borane compounds has been synthesized and characterized. Interestingly, these compounds display promising applications as potential hypergolic fuels owing to their excellent physiochemical properties including low melting points, high thermal stability, low viscosities, and unique hypergolic reactivity. Compared with popular hypergolic ionic liquids, the cost‐effective and scaling‐up advantages of these materials highlight their promising potential as high‐performance fuels in liquid bipropellant formulations.  相似文献   

2.
N,N‐Dimethylhydrazinium dicyanamide and nitrocyanamide ionic liquids (ILs) were prepared by quaterization of N,N‐dimethylhydrazine with alkyl halides followed by metathesis reactions with silver dicyanamide or silver nitrocyanamide. The key physicochemical properties, such as melting point and decomposition temperatures, density, viscosity, heat of formation, detonation pressure and velocity, and specific impulse were measured/calculated. The impact of anions and alkyl‐substituted cations on these properties is demonstrated. Droplet tests with white‐fuming nitric acid (WFNA) as an oxidizer were utilized to show that the 14 new N,N‐dimethylhydrazinium salts are hypergolic with ignition delay (ID) times ranging from 22 to 1642 ms, thereby suggesting that some may have potential as bipropellants.  相似文献   

3.
No flame, no gain : A hypergolic mixture is composed of stable species that readily react/ignite on molecular contact. Both the anion and the cation in an ionic liquid play prominent roles in determining hypergolic properties as well as ignition delay times. With the 2,2‐dialkyltriazanium cation, salts with nitrate, chloride, nitrocyanamide, and dicyanamide anions are hypergolic.

  相似文献   


4.
Currently, toxic and volatile hydrazine derivatives are still the main fuel choices for liquid bipropellants, especially in some traditional rocket propulsion systems. Therefore, the search for safer hypergolic fuels as replacements for hydrazine derivatives has been one of the most challenging tasks. In this study, six imidazolylidene‐borane compounds with zwitterionic structure have been synthesized and characterized, and their hypergolic reactivity has been studied. As expected, these compounds exhibited fast spontaneous combustion upon contact with white fuming nitric acid (WFNA). Among them, compound 5 showed excellent integrated properties including wide liquid operating range (?70–160 °C), superior loading density (0.99 g cm?3), ultrafast ignition delay times with WFNA (15 ms), and high specific impulse (303.5 s), suggesting promising application potential as safer hypergolic fuels in liquid bipropellant formulations.  相似文献   

5.
In propellant systems, fuels of choice continue to be hydrazine and its derivatives, even though they comprise a class of acutely carcinogenic and toxic substances which exhibit rather high vapor pressures and require expensive handling procedures and costly safety precautions. Hypergolic ionic liquids tend to have low volatility and high thermal and chemical stability, and often exhibit wide liquid ranges, which could allow the use of these substances as bipropellant fuels under a variety of conditions. A new family of borohydride ionic liquids and borane–ionic‐liquid solutions is described which meets nearly all of the desired important criteria for well‐performing fuels. They exhibit ignition‐delay times that are superior to that of any known hypergolic ionic liquid and may thus be legitimate replacements for hydrazine and its derivatives.  相似文献   

6.
Hypergolic ionic liquids (ILs) have shown a great promise as viable replacements for toxic and volatile hydrazine derivatives used as propellant fuels, and hence, have attracted increasing interest over the last decade. To take advantage of the reactivity and high energy density of the azido group, a family of low‐cost and easily prepared azide‐functionalized cation‐based ILs, including fuel‐rich anions, such as nitrate, dicyanamide, and nitrocyanamide anions, were synthesized and characterized. All the dicyanamide‐ and nitrocyanamide‐based ILs exhibited spontaneous combustion upon contact with 100 % HNO3. The densities of these hypergolic ILs varied in the range 1.11–1.29 g cm?3, and the density‐specific impulse, predicted based on Gaussian 09 calculations, was between 289.9 and 344.9 s g cm?3. The values of these two key physical properties are much higher than those of unsymmetrical dimethylhydrazine (UDMH). Among the studied compounds, compound IL‐3b, that is, 1‐(2‐azidoethyl)‐1‐methylpyrrolidin‐1‐ium dicyanamide, shows excellent integrated properties including the lowest viscosity (30.9 M Pa s), wide liquid operating range (?70 to 205 °C), shortest ignition‐delay time (7 ms) with 100 % HNO3, and superior density specific impulse (302.5 s g cm?3), suggesting promising applications with potential as bipropellant formulations.  相似文献   

7.
The issue of outer model weight updating is important in extending partial least squares (PLS) regression to modelling data that shows significant non‐linearity. This paper presents a novel co‐evolutionary component approach to the weight updating problem. Specification of the non‐linear PLS model is achieved using an evolutionary computational (EC) method that can co‐evolve all non‐linear inner models and all input projection weights simultaneously. In this method, modular symbolic non‐linear equations are used to represent the inner models and binary sequences are used to represent the projection weights. The approach is flexible, and other representations could be employed within the same co‐evolutionary framework. The potential of these methods is illustrated using a simulated pH neutralisation process data set exhibiting significant non‐linearity. It is demonstrated that the co‐evolutionary component architecture can produce results which are competitive with non‐linear neural network‐based PLS algorithms that use iterative projection weight updating. In addition, a data sampling method for mitigating overfitting to the training data is described. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Excitonic processes in semiconductors open up the possibility for pursuing photocatalytic organic synthesis. However, the insufficient spin relaxation and robust nonradiative decays in semiconductors place restrictions on both quantum yield and selectivity of these reactions. Herein, by taking polymeric carbon nitride (PCN)/acetone as a prototypical system, we propose that extrinsic aliphatic ketones can serve as molecular co‐catalysts for promoting spin‐flip transition and suppressing non‐radiative energy losses. Spectroscopic investigations indicate that hot excitons in PCN can be transferred to ketones, while triplet excitons in ketones can be transferred to PCN. As such, the PCN/ketone systems exhibit considerable triplet‐exciton accumulation and extended visible‐light response, leading to excellent performance in exciton‐based photocatalysis, such as singlet oxygen generation. This work provides a fundamental understanding of energy harvesting in semiconductor/molecule systems, and paves the way for optimizing exciton‐based photocatalysis via molecular co‐catalyst design.  相似文献   

9.
Nitrocyanamide ionic liquids with substituted imidazolium, guanidinium, and tetrazolium cations have been synthesized and fully characterized. Aminoguanidinium nitrocyanamide ( 7 ) crystallizes in the triclinic system P$\bar 1$ . The results obtained from theoretical calculations based on 7 are consistent with the single‐crystal structure data. These ionic liquids exhibit desirable physicochemical properties, such as low melting points and good thermal stabilities. Furthermore, they are all impact insensitive materials. Their energetic performances, including heats of formation, detonation pressures, and detonation velocities, were studied by a combination of theoretical and empirical calculations. The ionic liquids 1 – 4 have large liquid ranges and low viscosities. They were shown to be promising candidates as hypergolic ionic liquids through the combustion tests with 100 % HNO3.  相似文献   

10.
Understanding and controlling multicomponent co‐assembly is of primary importance in different fields, such as materials fabrication, pharmaceutical polymorphism, and supramolecular polymerization, but these aspects have been a long‐standing challenge. Herein, we discover that liquid–liquid phase separation (LLPS) into ion‐cluster‐rich and ion‐cluster‐poor liquid phases is the first step prior to co‐assembly nucleation based on a model system of water‐soluble porphyrin and ionic liquids. The LLPS‐formed droplets serve as the nucleation precursors, which determine the resulting structures and properties of co‐assemblies. Co‐assembly polymorphism and tunable supramolecular phase transition behaviors can be achieved by regulating the intermolecular interactions at the LLPS stage. These findings elucidate the key role of LLPS in multicomponent co‐assembly evolution and enable it to be an effective strategy to control co‐assembly polymorphism as well as supramolecular phase transitions.  相似文献   

11.
Five fluorene‐based co‐oligomers have been prepared to study their self‐assembly in a wide range of concentrations, from dilute solutions to the solid state. Subtle changes to the chemical structures, introduced to tune the emission colours over the entire visible range, induce strong differences in aggregation behaviour. Only two of the fluorescent co‐oligomer derivatives self‐assemble to form soluble fibrils from which fluorescent organogels emerge at higher concentrations. In contrast, the other compounds form precipitates. Mixed fluorescent co‐oligomer systems exhibit partial energy transfer, which allows the creation of white‐light‐emitting gels. Finally, a mechanism for the hierarchical self‐assembly of this class of materials is proposed based on experimental results and molecular modelling calculations.  相似文献   

12.
Carbon materials that are intrinsically co‐doped with nitrogen and sulfur heteroatoms are synthesised by facile annealing of nitrile‐functionalised thiazolium salts. Extremely high degrees of doping are achieved, especially for sulfur. The method further allows for direct tuning of the amounts of both N and S, establishing a new synthetic pathway in the emerging field of S‐doped carbon materials.  相似文献   

13.
Hypergolic ionic liquids to mill, suspend, and ignite boron nanoparticles   总被引:1,自引:0,他引:1  
Boron nanoparticles prepared by milling in the presence of a hypergolic energetic ionic liquid (EIL) are suspendable in the EIL and the EIL retains hypergolicity leading to the ignition of the boron. This approach allows for incorporation of a variety of nanoscale additives to improve EIL properties, such as energetic density and heat of combustion, while providing stability and safe handling of the nanomaterials.  相似文献   

14.
Hypergolic systems rely on organic fuel and a powerful oxidizer that spontaneously ignites upon contact without any external ignition source. Although their main utilization pertains to rocket fuels and propellants, it is only recently that hypergolics has been established from our group as a new general method for the synthesis of different morphologies of carbon nanostructures depending on the hypergolic pair (organic fuel-oxidizer). In search of new pairs, the hypergolic mixture described here contains polyaniline as the organic source of carbon and fuming nitric acid as strong oxidizer. Specifically, the two reagents react rapidly and spontaneously upon contact at ambient conditions to afford carbon nanosheets. Further liquid-phase exfoliation of the nanosheets in dimethylformamide results in dispersed single layers exhibiting strong Tyndall effect. The method can be extended to other conductive polymers, such as polythiophene and polypyrrole, leading to the formation of different type carbon nanostructures (e.g., photolumincent carbon dots). Apart from being a new synthesis pathway towards carbon nanomaterials and a new type of reaction for conductive polymers, the present hypergolic pairs also provide a novel set of rocket bipropellants based on conductive polymers.  相似文献   

15.
Hybrid rocket propulsion can contribute to reduce launch costs by simplifying engine design and operation. Hypergolic propellants, i.e. igniting spontaneously and immediately upon contact between fuel and oxidizer, further simplify system integration by removing the need for an ignition system. Such hybrid engines could also replace currently popular hypergolic propulsion approaches based on extremely toxic and carcinogenic hydrazines. Here we present the first demonstration for the use of hypergolic metal–organic frameworks (HMOFs) as additives to trigger hypergolic ignition in conventional paraffin-based hybrid engine fuels. HMOFS are a recently introduced class of stable and safe hypergolic materials, used here as a platform to bring readily tunable ignition and combustion properties to hydrocarbon fuels. We present an experimental investigation of the ignition delay (ID, the time from first contact with an oxidizer to ignition) of blends of HMOFs with paraffin, using White Fuming Nitric Acid (WFNA) as the oxidizer. The majority of measured IDs are under 10 ms, significantly below the upper limit of 50 ms required for functional hypergolic propellant, and within the ultrafast ignition range. A theoretical analysis of the performance of HMOFs-containing fuels in a hybrid launcher engine scenario also reveals the effect of the HMOF mass fraction on the specific impulse (Isp) and density impulse (ρIsp). The use of HMOFs to produce paraffin-based hypergolic fuels results in a slight decrease of the Isp and ρIsp compared to that of pure paraffin, similar to the effect observed with Ammonia Borane (AB), a popular hypergolic additive. HMOFs however have a much higher thermal stability, allowing for convenient mixing with hot liquid paraffin, making the manufacturing processes simpler and safer compared to other hypergolic additives such as AB.

Hypergolic hybrid rocket propulsion, achieved through the addition of metal–organic frameworks, can contribute to reduce launch costs by simplifying engine design and operation.  相似文献   

16.
Integrating intelligent molecular systems into 3D printing materials and transforming their molecular functions to the macroscale with controlled superstructures will unleash great potential for the development of smart materials. Compared to macromolecular 3D printing materials, self‐assembled small‐molecule‐based 3D printing materials are very rare owing to the difficulties of facilitating 3D printability as well as preserving their molecular functions macroscopically. Herein, we report a general approach for the integration of functional small molecules into 3D printing materials for direct ink writing through the introduction of a supramolecular template. A variety of inorganic and organic small‐molecule‐based inks were 3D‐printed, and their superstructures were refined by post‐printing hierarchical co‐assembly. Through spatial and temporal control of individual molecular events from the nano‐ to the macroscale, fine‐tuned macroscale features were successfully installed in the monoliths.  相似文献   

17.
The precise control of monomer sequence and stereochemistry in copolymerization is of much interest and importance for the synthesis of functional polymers, but studies toward this goal have met with only limited success to date. Now, the co‐syndiospecific alternating copolymerization of methoxyphenyl‐ and N,N‐dimethylaminophenyl‐functionalized propylenes with styrene by half‐sandwich rare‐earth catalysts is reported. This reaction efficiently afforded the corresponding functionalized propylene‐alt‐styrene copolymers with a perfect alternating sequence and excellent co‐syndiotacticity (rrrr >99 %), thus constituting the first example of co‐stereospecific alternating copolymerization of polar and non‐polar olefins.  相似文献   

18.
Graphite shows great potential as an anode material for rechargeable metal‐ion batteries because of its high abundance and low cost. However, the electrochemical performance of graphite anode materials for rechargeable potassium‐ion batteries needs to be further improved. Reported herein is a natural graphite with superior rate performance and cycling stability obtained through a unique K+‐solvent co‐intercalation mechanism in a 1 m KCF3SO3 diethylene glycol dimethyl ether electrolyte. The co‐intercalation mechanism was demonstrated by ex situ Fourier transform infrared spectroscopy and in situ X‐ray diffraction. Moreover, the structure of the [K‐solvent]+ complexes intercalated with the graphite and the conditions for reversible K+‐solvent co‐intercalation into graphite are proposed based on the experimental results and first‐principles calculations. This work provides important insights into the design of natural graphite for high‐performance rechargeable potassium‐ion batteries.  相似文献   

19.
《Electroanalysis》2018,30(2):220-224
M13 virus (M13) as scaffolds has a major appeal, owing to their mono‐dispersed, fibrillar morphology and engineerable surface reactive sites. Herein we had developed a facile electrocatalyst for energy application. Platinum nanostructures are directly co‐deposited from a wild‐type M13 (or) two different engineered M13 mixed electrolytes onto the ITO electrodes. The engineered M13 with 4E peptides could specifically nucleate Pt precursor thereby enables the efficient growth of teeth‐like structures at the ITO electrode. The electrocatalytic activity of the resulting electrocatalyst toward methanol oxidation in alkaline medium was investigated and found enhanced mass activity (0.321 A/mgPt) relative to the catalyst prepared from wild‐type M13, Y3E peptides engineered M13 and without M13. Our novel electrocatalyst fabrication can be extended to other metal and metal oxides and its application might be useful to develop novel clean and green energy generating and storage materials.  相似文献   

20.
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy‐transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh‐Cp‐type metal complexes can be encapsulated inside a self‐assembled M6L4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co‐encapsulation is observed. This principle is demonstrated by co‐encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge‐transfer interaction may also contribute to this effect. Charge‐transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge‐transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge‐transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号