首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of very recently developed electrochemical biosensing strategies are promoting electrochemical biosensing systems into practical point‐of‐care applications. The focus of research endeavors has transferred from detection of a specific analyte to the development of general biosensing strategies that can be applied for a single category of analytes, such as nucleic acids, proteins, and cells. In this Minireview, recent cutting‐edge research on electrochemical biosensing strategies are described. These developments resolved critical challenges regarding the application of electrochemical biosensors to practical point‐of‐care systems, such as rapid readout, simple biosensor fabrication method, ultra‐high detection sensitivity, direct analysis in a complex biological matrix, and multiplexed target analysis. This Minireview provides general guidelines both for scientists in the biosensing research community and for the biosensor industry on development of point‐of‐care system, benefiting global healthcare.  相似文献   

2.
《Electroanalysis》2018,30(3):517-524
We propose a separation/concentration‐signal‐amplification in‐one method based on electrochemical conversion (ECC) of magnetic nanoparticles (MNPs) to develop a facile and sensitive electrochemical biosensor for chloramphenicol (CAP) detection. Briefly, aptamer‐modified magnetic nanoparticles (MNPs‐Apt) was designed to capture CAP in sample, then the MNPs‐Apt composite was conjugated to Au electrode through the DNA hybridization between the unoccupied aptamer and a strand of complementary DNA. The ECC method was applied to transfer MNPs labels to electrochemically active Prussian blue (PB). The anodic and cathodic currents of PB were taken for signal readout. Comparing with conventional methods that require electrochemically active labels and related sophisticated labelling procedures, this method explored and integrated the magnetic and electrochemical properties of MNPs into one system, in turn realized magnetic capturing of CAP and signal generation without any additional conventional labels. Taking advantages of the high abundance of iron content in MNPs and the refreshing effect deriving from ECC process, the method significantly promoted the signal amplification. Therefore, the proposed biosensors exhibited linear detection range from 1 to 1000 ng mL−1 and a limit of detection down to 1 ng mL−1, which was better than or comparable with those of most analogues, as well as satisfactory specificity, storage stability and feasibility for real samples. The developed method may lead to new concept for rapid and facile biosensing in food safety, clinic diagnose/therapy and environmental monitoring fields.  相似文献   

3.
Monitoring of human serum albumin (HSA) in a point‐of‐care fashion is urgently needed in particular for elderly or chronically ill patients. Herein, a dual‐state emissive chalcone probe having the feature of aggregation‐induced emission was designed and synthesized. The concentration of HSA can be evaluated by the ratios of emission from probes in aggregated and monomeric state, which gives a visually discernible red‐to‐green color change. A simple, portable paper‐based analytical device have been fabricated by integration of the recognition probe in the detection pad and employed for HSA test using the whole blood samples. This paper‐based assay shows the analytical capability comparable to the standard testing methods but is in a point‐of‐care fashion, providing a promising tool for at‐home HSA detection and HSA‐related disease diagnosis.  相似文献   

4.
We introduce a general method to transform antibodies into ratiometric, bioluminescent sensor proteins for the no‐wash quantification of analytes. Our approach is based on the genetic fusion of antibody fragments to NanoLuc luciferase and SNAP‐tag, the latter being labeled with a synthetic fluorescent competitor of the antigen. Binding of the antigen, here synthetic drugs, by the sensor displaces the tethered fluorescent competitor from the antibody and disrupts bioluminescent resonance energy transfer (BRET) between the luciferase and fluorophore. The semisynthetic sensors display a tunable response range (submicromolar to submillimolar) and large dynamic range (ΔR max>500 %), and they permit the quantification of analytes through spotting of the samples onto paper followed by analysis with a digital camera.  相似文献   

5.
《Electroanalysis》2005,17(3):239-245
Oxygen dependence of a tyrosinase‐based electrochemical biosensor for determination of phenol in aqueous and organic media was systematically investigated. The result demonstrated that the enzymatic coupling reaction rate of tyrosinase (deoxy form) and O2 to regenerate tyrosinase (oxy form) is a kinetically fast reaction, and the significant change of O2 concentration in aqueous solution did not affect the coupling reaction. The further increase of O2 concentration did not increase the overall oxidation reaction rate of the substrate at low substrate concentration (e.g.,<10 μM phenol) when O2 concentration was greater than 8.9 ppm. The oxygen dependence was observed in the case of high substrate concentration due to insufficient amount of O2 available for the regeneration of tyrosinase. In other words, the upper linear range is oxygen dependent for tyrosinase biosensors. The phenol biosensors employing microelectrodes had wider upper linear ranges than macroelectrodes in both aqueous and organic phase, which can be explained by the oxygen dependence.  相似文献   

6.
The design of a portable Raman/SERS‐LFA reader with line illumination using a custom‐made fiber optic probe for rapid, quantitative, and ultrasensitive point‐of‐care testing (POCT) is presented. The pregnancy hormone human chorionic gonadotropin (hCG) is detectable in clinical samples within only 2–5 s down to approximately 1.6 mIU mL?1. This acquisition time is several orders of magnitude shorter than those of existing approaches requiring expensive Raman instrumentation, and the method is 15‐times more sensitive than a commercially available lateral flow assay (LFA) as the gold standard. The SERS‐LFA technology paves the way for affordable, quantitative, and ultrasensitive POCT with multiplexing potential in real‐world applications, ranging from clinical chemistry to food and environmental analysis as well as drug and biowarfare agent testing.  相似文献   

7.
8.
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point‐of‐care (POC) diagnostics in a low‐resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic‐gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on‐site applications.  相似文献   

9.
《Electroanalysis》2018,30(8):1584-1603
In cancer, screening and early detection are critical for the success of the patient's treatment and to increase the survival rate. The development of analytical tools for non‐invasive detection, through the analysis of cancer biomarkers, is imperative for disease diagnosis, treatment and follow‐up. Tumour biomarkers refer to substances or processes that, in clinical settings, are indicative of the presence of cancer in the body. These biomarkers can be detected using biosensors, that, because of their fast, accurate and point of care applicability, are prominent alternatives to the traditional methods. Moreover, the constant innovations in the biosensing field improve the determination of normal and/or elevated levels of tumour biomarkers in patients’ biological fluids (such as serum, plasma, whole blood, urine, etc.). Although several biomarkers (DNA, RNA, proteins, cells) are known, the detection of proteins and circulating tumour cells (CTCs) are the most commonly reported due to their approval as tumour biomarkers by the specialized entities and commonly accepted for diagnosis by medical and clinical teams. Therefore, electrochemical immunosensors and cytosensors are vastly described in this review, because of their fast, simple and accurate detection, the low sample volumes required, and the excellent limits of detection obtained. The biosensing strategies reported for the six most commonly diagnosed cancers (lung, breast, colorectal, prostate, liver and stomach) are summarized and the distinct phases of the sensors’ constructions (surface modification, antibody immobilization, immunochemical interactions, detection approach) and applications are discussed.  相似文献   

10.
《Electroanalysis》2018,30(8):1781-1790
An useful electrochemical sensing approach was developed for epinephrine (EP) detection based on graphene quantum dots (GQDs) and laccase modified glassy carbon electrodes (GC). The miniature GC biosensor was designed and constructed via the immobilization of laccase in an electroactive layer of the electrode coated with carbon nanoparticles. This sensing arrangement utilized the catalytic oxidation of EP to epinephrine quinone. The detection process was based on the oxidation of catecholamine in the presence of the enzyme – laccase. With the optimized conditions, the analytical performance demonstrated a high degree of sensitivity −2.9 μA mM−1 cm−2, selectivity in a broad linear range (1–120×10−6 M) with detection limit of 83 nM. Moreover, the method was successfully applied for EP determination in labeled pharmacological samples.  相似文献   

11.
12.
A simple technique for the construction of a versatile diazirine‐functionalized nanostructured platform for enzymes photografting and electrochemical biosensing was proposed in this work. The feasibility of the approach was proved by photo crosslinking of an enzyme, tyrosinase, to diazirine‐activated aminated carbon nanotubes coated glassy carbon electrode. The analytical performances of the realized biosensor were evaluated employing catechol as analyte. Then the sensor based on the diazirine‐functionalized nanostructured platform with photografted tyrosinase was applied together with the high resolution technique Differential Alternative Pulses Voltammetry for dopamine determination in the linear concentration range of 5–25 μmol L?1 in the presence of interfering agents as uric acid up to its 100‐fold excess.  相似文献   

13.
14.
15.
16.
This work describes an electrochemical genosensor for detection of genomic RNA of Zika virus in real samples of infected patients, using a new platform based on graphite electrodes modified with electrochemically reduced graphene oxide and polytyramine‐conducting polymer. The developed genosensor was suitable for differentiation between samples of healthy and infected patients with Zika virus by differential pulse voltammetry, detecting up to 0.1 fg/mL (1.72 copies/mL), showing good stability (about 60 days), rapid analysis (about 20 min) and potential for filling the lack of practical diagnostic methods for Zika virus.  相似文献   

17.
We developed a smartphone‐based on‐site nucleic acid testing (NAT) platform that can image and analyze lateral flow nucleic acid assays at point‐of‐care settings. An inexpensive add‐on was devised to run lateral flow assays while providing homogeneous ambient light for imaging. In addition, an Android app with a user‐friendly interface was developed for the result analysis and management. Linear color calibration is implemented inside the app to minimize the colorimetric reaction difference between smartphones. A relationship function between nucleic acid concentration and colorimetric reaction was established and evaluated by leave‐one‐out cross validation. The predicted concentration and true concentration showed a good agreement with an R‐squared value of 0.96. This smartphone‐based NAT platform can be used to diagnose infectious diseases and monitor disease progression, and assess treatment efficacy, especially for resource‐limited settings.  相似文献   

18.
《Electroanalysis》2006,18(23):2375-2380
Reagentless glucose‐detecting biosensors were constructed by incorporating a series of phenothiazine derivatives as mediators onto chitosan (CHIT) matrix via different covalent bonds, wherein glucose oxidase (GOx) was employed as the enzyme. Electrochemical studies show significant decrease in the electrocatalytic current during cyclic voltammetric and amperometric measurements, resulting from complexes formation between GOx and phenothiazine molecules. This behavior was further verified by spectroscopic studies. The decrease in the peak intensity at 258 nm is due to the gradual complexes formation over time, consistent to the decrease in the current signal in electrochemical investigations. Correlation with the molecular structures of phenothiazine derivatives reveals a strong relationship between the hydrophobicity of the mediators and the stability of the biosensor electrodes.  相似文献   

19.
Among various immobilizing materials, conductive polymer‐based nanocomposites have been widely applied to fabricate the biosensors, because of their outstanding properties such as excellent electrocatalytic activity, high conductivity, and strong adsorptive ability compared to conventional conductive polymers. Electrochemical biosensors have played a significant role in delivering the diagnostic information and therapy monitoring in a rapid, simple, and low cost portable device. This paper reviews the recent developments in conductive polymer‐based nanocomposites and their applications in electrochemical biosensors. The article starts with a general and concise comparison between the properties of conducting polymers and conducting polymer nanocomposites. Next, the current applications of conductive polymer‐based nanocomposites of some important conducting polymers such as PANI, PPy, and PEDOT in enzymatic and nonenzymatic electrochemical biosensors are overviewed. This review article covers an 8‐year period beginning in 2010.  相似文献   

20.
《Electroanalysis》2017,29(5):1310-1315
A novel photo‐induced electrochemical biosensing method has been developed based on fluorescence quenching effect and electrochemical method. In this sensing strategy, the molecular beacon probes labeled with methylene blue were immobilized on the gold nanoparticles modified gold electrode surface firstly; then dopamine was assembled on the electrode surface through electrostatic interaction with gold nanoparticles. Under the continuous illumination, the fluorescence of the methylene blue was quenched by the gold nanoparticles before hybridization; after hybridization with the complementary DNA, methylene blue was far away from the gold nanoparticles and the fluorescence recovered, and then singlet oxygen was generated in the photosensitive reaction of methylene blue in the presence of dissolved oxygen. Singlet oxygen reacted with dopamine, which resulted in the reduction of concentration of the dopamine on the electrode surface. The current of the dopamine on the electrode was used for the sensing of the conformational change of molecular beacon and hence for the detection of target DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号