首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triple stimuli (temperature/pH/photo)‐responsive amphiphilic glycopolymer, poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐1,2,3,4‐di‐O‐isopropylidene‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAIpGP)‐b‐PMAZO] was synthesized by atom transfer radical polymerization, followed by the hydrolysis of MAIpGP groups, resulting in the target product poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAGP)‐b‐PMAZO]. The composition, moleculer weight, and moleculer weight distribution of the resultant polymers were characterized by 1H NMR and gel permeation chromatography. The micelles formed in aqueous solutions were simulated by various chemical and physical stimuli and characterized by dynamic light scattering, transmission electron microscopy, and UV‐vis spectroscopy. It was found that the glycopolymer is responsive to three different types of stimulus (light, temperature, and pH). The poly(2‐(dimethylamino) ethyl methacrylate) segments give thermo‐ and pH‐responsiveness. The presence of the azobenzene moiety endows the block copolymer to exhibit light‐responsiveness due to its reversible trans‐cis isomerization conversion. The triple stimuli‐responsive glycopolymer micelles can simulate biomacromolecues in vivo/in vitro environment and can be expected to open up new applications in various fields. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2131–2138  相似文献   

2.
Self‐immolative polymers (SIPs) undergo depolymerization in response to the cleavage of stimuli‐responsive end‐caps from their termini. Some classes of SIPs, including polycarbamates, have depolymerization rates that depend on environmental factors such as solvent and pH. In previous work, hydrophobic SIPs have been incorporated into amphiphilic block copolymers and used to prepare nanoassemblies. However, stimuli‐responsive hydrophilic blocks have not previously been incorporated. In this work, we synthesized amphiphilic copolymers composed of a hydrophobic polycarbamate SIP block and a hydrophilic poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) block connected by a UV light‐responsive linker end‐cap. It was hypothesized that after assembly of the block copolymers into nanoparticles, chain collapse of the PDMAEMA above its lower critical solution temperature (LCST) might change the environment of the SIP block, thereby altering its depolymerization rate. Self‐assembly of the block copolymers was performed, and the depolymerization of the resulting assemblies was studied by fluorescence spectroscopy, dynamic light scattering, and NMR spectroscopy. At 20 °C, the system exhibited a selective response to the UV light. At 65 °C, above the LCST of PDMAEMA, the systems underwent more rapid depolymerization, suggesting that the increase in rate arising from the higher temperature dominated over environmental effects arising from chain collapse. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1868–1877  相似文献   

3.
Herein, the synthesis and potential application as cargo delivery systems of thermo‐responsive poly(N‐vinylcaprolactam) (PVCL)‐based, pH‐responsive poly(2‐(diethylamino)ethyl) methacrylate (PDEAEMA)‐based, and thermo‐, and pH‐responsive PDEAEMA/PVCL‐based core–shell nanogels are reported. All the nanogels have been synthesized using different dextran‐methacrylates (Dex‐MAs) as macro‐cross‐linkers. Doxorubicin hydrochloride (DOXO), an anticancer drug, has been effectively loaded into nanogels via hydrogen‐bonding interactions between ? OH groups of DOXO and ? OH groups of Dex‐MA chains. Drug‐release profiles at various pHs, and the cytocompatibility of the DOXO‐loaded nanogels have been assessed in vitro using cervical cancer HeLa and breast cancer MDA‐MB‐231 cell lines. In all the cases, the DOXO release is controlled by Fickian diffusion and case‐II transport, being the diffusional process dominant. In addition, DOXO‐loaded nanogels are efficiently internalized by HeLa and MDA‐MB‐231 cells and DOXO is progressively released in time. Therefore, nanogels synthesized could be suitable and potentially useful as nanocarriers for antitumor drug delivery. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1694–1705  相似文献   

4.
A series of well‐defined double hydrophilic double‐grafted copolymers, consisting of polyacrylate backbone, hydrophilic poly(2‐(diethylamino)ethyl methacrylate) and poly(ethylene glycol) side chains, were synthesized by successive atom transfer radical polymerization. The backbone, poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) comb copolymer, was firstly prepared by ATRP of PEGMEA macromonomer via the grafting‐through route followed by reacting with lithium diisopropylamide and 2‐bromopropionyl chloride to give PPEGMEA‐Br macroinitiator of ATRP. Finally, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(2‐(diethylamino)ethyl methacrylate) graft copolymers were synthesized by ATRP of 2‐(diethylamino)ethyl methacrylate using PPEGMEA‐Br macroinitiator via the grafting‐from route. Poly(2‐(diethylamino)ethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections, which is tolerant of both acidic and basic environment. The molecular weights of both backbone and side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.39). The results of fluorescence spectroscopy, dynamic laser light scattering and transmission electron microscopy showed this double hydrophilic copolymer was stimuli‐responsive to both pH and salinity. It can aggregate to form reversible micelles in basic surroundings which can be conveniently dissociated with the addition of salt at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3142–3153, 2009  相似文献   

5.
We report the synthesis and gradient stimuli‐responsive properties of cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures. A ionic hyperbranched poly(β‐cyclodextrin) (β‐CD) core was firstly synthesized via a convenient “A2+B3” approach. Double‐layered shell architectures, composed of poly(N‐isopropyl acrylamide) (PNIPAm) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) miktoarms as the outermost shell linked to poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) homoarms which form the inner shell, were obtained by a sequential atom transfer radical polymerization (ATRP) and parallel click chemistry from the modified hyperbranched poly(β‐CD) macroinitiator. The combined characterization by 1H NMR, 13C NMR, 1H‐29Si heteronuclear multiple‐bond correlation (HMBC), FTIR and size exclusion chromatography/multiangle laser light scattering (SEC/MALLS) confirms the remarkable hyperbranched poly(β‐CD) core and double‐shell miktoarm architectures. The gradient triple‐stimuli‐responsive properties of hyperbranched core‐double‐shell miktoarm architectures and the corresponding mechanisms were investigated by UV–vis spectrophotometer and dynamic light scattering (DLS). Results show that this polymer possesses three‐stage phase transition behaviors. The first‐stage phase transition comes from the deprotonation of PDEAEMA segments at pH 9–10 aqueous solution under room temperature. The confined coil‐globule conformation transition of PNIPAm and PDMAEMA arms gives rise to the second‐stage hysteretic cophase transition between 38 and 44 °C at pH 10. The third‐stage phase transition occurs above 44 °C at pH = 10 attributed to the confined secondary conformation transition of partial PDMAEMA segments. This cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures are expected to solve the problems of inadequate functionalities from core layer and lacking multiresponsiveness for shell layers existing in the dendritic core‐multishell architectures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A dual stimuli‐responsive (pH and thermo) polyethylene terephthalate (PET) track‐etched membrane has been prepared using atom transfer radical polymerization (ATRP). First, ATRP initiator 2‐bromoisobutyryl bromide was anchored onto the membrane surface. Then, 2‐hydroxyethyl‐methacrylate (HEMA) and N‐isopropylacrylamide (NIPAAm) were grafted onto the membrane surface using ATRP. X‐ray photoelectron spectroscopy, ATR‐Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis were used to characterize the membrane structure and thermal properties; water flux measurement was used to investigate the double stimuli‐responsive property of the obtained membrane. The results indicate that the PHEMA and PNIPAAm binary grafted PET track‐etched membrane has double environmental responsiveness. This method provides a potential modification method for preparing functional membranes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Utilization of naturally available raw materials for the fabrication of eco‐friendly functional materials has long been desired. In this work, a series of superabsorbent nanocomposites were prepared by radical solution copolymerization of sodium carboxymethyl cellulose (CMC), partially neutralized acrylic acid (NaA), and rectorite (REC) in the presence of initiator ammonium persulfate (APS) and crosslinker N,N'‐methylene‐bis‐acrylamide (MBA). The optimal reaction variables including the mass ratio of acrylic acid (AA) to CMC, MBA concentration, and REC content were explored. FTIR spectra confirmed that NaA had been grafted onto CMC and REC participated in polymerization. REC was exfoliated and uniformly dispersed in the CMC‐g‐PNaA matrix without agglomeration as shown by XRD, TEM, and SEM analysis. The thermal stability, swelling capabilities, and rate of the nanocomposites were improved after introducing REC, and the gel strength greatly depended on the concentration of crosslinker MBA. The nanocomposite showed excellent responsive properties and reversible On–Off switching characteristics in various saline, pH, and hydrophilic organic solvent/water solutions, which provided great possibility to extend the application domain of the superabsorbent nanocomposites such as drug delivery system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The many postpolymerization modification opportunities of biocompatible poly(2‐alkyl/aryl‐2‐oxazoline)s (PAOx), such as thiol–ene/thiol–yne, azide–alkyne cycloadditions, amidation, and transesterification, are one of the most appealing features of this polymer class for its popularity in biomedicine. Inspired by recent reports on guanidine‐catalyzed transesterification and amidation reactions of methyl ester substrates, we explored the use of guanidines as a reactant for the modification of methyl ester functional PAOx, to obtain the respective acyl guanidines. The obtained acyl guanidines functional polymers display reactivity toward α‐haloketones, yielding imidazole functional PAOx. The obtained polymer structures are protonated in a broad pH range, and the acyl guanidine moiety is demonstrated to be a cleavable linker under basic conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2616–2624  相似文献   

9.
A pH and reduction dual‐stimuli‐responsive PEGDA/PAMAM injectable network hydrogel containing “acetals” as pH‐sensitive groups and “disulfides” as reducible linkages was designed and synthesized via aza‐Michael addition reaction between PAMAM and PEGDA diacrylates. The pore size and swelling ratio of hydrogels was varied from 14 ± 3 to 19 ± 4 μm and 214 ± 13 to 300 ± 19 μm, respectively, with varying ethylene glycol repeating units in diacrylates. The swelling ratio of PEGDA/PAMAM network hydrogel increased with increase in the molecular weight of PEG and with decrease in pH. The presence of different cationizable amino‐functionalities in PEGDA/PAMAM network hydrogel helped to enhance the swelling ability of hydrogel under the acidic conditions. The continuous increase in metabolically active live HeLa cells with time in MTT assay implied biocompatibility/noncytotoxicity of the synthesized PEGDA/PAMAM injectable network hydrogel. Furthermore, the prepared PEGDA/PAMAM hydrogel showed higher degradation at lower pH and at higher concentration of DTT. The burst release of doxorubicin from PEGDA/PAMAM hydrogel under the environment of the lower pH and in presence of DTT compared to the release at normal physiological pH and in absence of DTT suggested the potential ability of this model hydrogel system for targeted and selective anticancer drug release at tumor tissues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2080–2095  相似文献   

10.
11.
A novel nanofibrous mat featuring an ultraviolet (UV)‐induced CO2‐responsive behavior was fabricated via electrospinning and used as a controlled drug release system. First, a random copolymer for electrospinning, poly(N,N‐diethylaminoethyl acrylamide‐coN‐benzylacrylamide‐coN,N‐dimethyl‐N‐(2‐nitrobenzyl)‐ethaneamine acrylamide‐co‐4‐acryloyloxy benzophenone) [P(DEEA‐co‐BA‐co‐DMNOBA‐co‐ABP)], was prepared based on pentafluorophenyl esters via an “active ester‐amine” chemistry reaction. Subsequently, doxorubicin hydrochloride (DOX)‐loaded P(DEEA‐co‐BA‐co‐DMNOBA‐co‐ABP) nanofibers were fabricated, yielding a new drug‐loaded nanofibrous mat as a potential wound dressing. These DOX‐loaded nanofibers can respond to UV irradiation and CO2 stimulation. Interestingly, without UV irradiation, the fabricated nanofibers cannot exhibit any responsiveness. Therefore, the majority of the DOX was steadily stored in the nanofibers, even in the presence of CO2. However, upon UV irradiation, the CO2‐responsive behavior of the nanofibers was activated and the prepared nanofibers swelled slightly, resulting in the release of around 42% DOX from the nanofibers. Upon further purging with CO2, the release amount of DOX from the nanofibers could reach up to approximately 85%, followed by the morphological transition from a nanofibrous mat to a porous hydrogel film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1580–1586  相似文献   

12.
Stimuli‐responsive macroazoinitiators with central azo unit have been synthesized by atom transfer radical polymerization (ATRP) of 2‐(dimethylamino)ethyl methacrylate or 2‐(diethylamino)ethyl methacrylate in 2‐propanol at 25 °C. The mean degree of polymerization of the polymer chains besides the azo group was fixed between 25 and 60. 1H NMR, gel permeation chromatography, UV‐Vis spectrophotometer, and surface tensiometer were used to characterize the stimuli‐responsive macroazoinitiators in terms of their chemical structure, molecular weight, polydispersity, and pH‐responsive behavior, respectively. Eventually, dispersion polymerization of styrene using the poly[2‐(diethylamino)ethyl methacrylate] (PDEA) macroazoinitiator as an inistab (initiator + stabilizer) in 2‐propanol medium was conducted. Near‐monodisperse 98 nm polystyrene (PS) latex particles with pH‐responsive PDEA hair were successfully synthesized. The PS latex particles with the PDEA hair can be dispersed in acidic aqueous media where the PDEA hair was protonated and was solvated, and can be flocculated in basic aqueous media where the PDEA hair was deprotonated and was precipitated. This dispersion‐flocculation cycle was reversible. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3431–3443, 2009  相似文献   

13.
A series of pH/redox dual stimuli‐responsive poly(2‐methacryloyloxyethyl phosphorylcholine)25block‐poly(l ‐histidine)n (p[MPC])25b‐p[His]n, n = 20, 35, 50, and 75) copolymers consisting of a pH‐responsive p(His)n block and a biocompatible phospholipid analog p(MPC) block connected by a redox‐responsive disulfide linker have been synthesized. The block copolymers are self‐assembled into uniform micelles (~100 nm) in which doxorubicin (Dox) is efficiently encapsulated. The in vitro release profile shows an enhanced release of Dox at low pH (5.0) in 10 mM glutathione (GSH). The in vitro cell viability assays performed using various cell lines show that the blank hybrid micelles have no acute or intrinsic toxicity. A pH‐dependent cytotoxicity is observed with the Dox‐loaded micelles, especially at pH 5.0. Moreover, confocal microscopy images and flow cytometry results show the pH‐dependent cellular uptake of Dox‐loaded micelles. Therefore, the Dox‐loaded micelles can be considered a good candidate for cancer therapy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2061–2070  相似文献   

14.
从生物体离子通道中得到启发,研究人员开发了一系列仿生纳米通道,通过对内外表面的化学修饰,实现了在仿生纳米通道受限空间内离子转运的智能调控.目前的研究主要集中在均质膜方向,均质膜单一的结构和功能限制了其进一步发展,研发制备过程简单、稳定性好和功能多样的异质膜逐渐成为研究热点.与均质膜相比,异质膜被赋予单独使用均质膜时无法...  相似文献   

15.
A novel kind of graft polymer poly(aspartic acid)‐ethanediamine‐g‐adamantane/methyloxy polyethylene glycol (Pasp‐EDA‐g‐Ad/mPEG) was designed and synthesized for drug delivery in this study. The chemical structure of the prepared polymer was confirmed by proton NMR. The obtained polymer can self‐assemble into micelles which were stable under a physiological environment and displayed pH‐ and β‐cyclodextrin (β‐CD)‐responsive behaviors because of the acid‐labile benzoic imine linkage and hydrophobic adamantine groups in the side chains of the polymer. The doxorubicin (Dox)‐loaded micelles showed a slow release under physiological conditions and a rapid release after exposure to weakly acidic or β‐CD environment. The in vitro cytotoxicity results suggested that the polymer was good at biocompatibility and could remain Dox biologically active. Hence, the Pasp‐EDA‐g‐Ad/mPEG micelles may be applied as promising controlled drug delivery system for hydrophobic antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1387–1395  相似文献   

16.
Reversible addition‐fragmentation chain transfer copolymerization of dimethylaminoethyl acrylate (DMAEA) and methyl acrylate (MA) and their methacrylate counterparts (MMA) has been performed with good control over molecular weight and polydispersity. A screening in composition of copolymers has been performed from 0 to 75% of MA (or MMA). The behavior of these pH and temperature‐sensitive copolymers has been studied in aqueous solution by measuring the cloud point (CP) and the acid dissociation constants (pKa). The higher incorporation of the hydrophobic monomer in the copolymer resulted in an increase in the pKa values due to the larger distance between charges thus facilitating the protonation of adjacent nitrogens for both, the acrylate and methacrylate derivatives. The CP behavior of the copolymers has been studied in pure water and the CP values have been found to be irreproducible for the acrylate polymers, as a consequence of the self‐hydrolysis of DMAEA. Hence, kinetic studies have been performed to quantify the degree of self‐hydrolysis at different temperatures and polymer concentrations to explore the full potential and application of these versatile polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3333–3338  相似文献   

17.
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Stimuli‐responsive materials are of immense importance because of their ability to undergo alteration of their properties in response to their environment. The properties of such materials can be tuned by subtle adjustments in temperature, pH, light, and so forth. Among such smart materials, multi‐stimuli‐responsive polymeric materials are of pronounced significance as they offer a wide range of applications and their properties can be tuned through several mechanisms. Here, we aim to highlight some recent studies showcasing the multi‐stimuli‐responsive character of these polymers, which are still relatively little known compared to their single‐stimuli‐responsive counterpart.  相似文献   

19.
Poly(N‐acryloyl‐N′‐ethyl piperazine‐co‐N‐isopropylacrylamide) hydrogels were prepared by thermal free‐radical copolymerization of N‐acryloyl‐N′‐ethyl piperazine (AcrNEP) and N‐isopropylacrylamide (NIPAM) in solution using N, N′‐methylene bisacrylamide as the crosslinking agent. The gels were responsive to changes in external stimuli such as pH and temperature. The pH and temperature responsive character of the gels was greatly dependent on the monomer content, namely AcrNEP and NIPAM, respectively. The gels swelled in acidic (pH 2) and de‐swelled in basic (pH 10) solutions with a response time of 60 min. With increase in temperature from 23 to 80 °C the swelling of the gels decreased continuously and this effect was different in acidic and basic solutions. The temperature dependence of equilibrium water content of the gels was evaluated by the Gibbs–Helmholtz equation. Detailed analysis of the swelling properties of these new gels in relation to molecular heterogeneity in acidic (pH 2) and basic (pH 10) solutions were performed. Water transport property of the gels was studied gravimetrically. In acidic solution, the diffusion process was non‐Fickian (anomalous) while in basic solution, the diffusion was quasi‐Fickian. The effect was more evident in solution of pH 2 than in pH 10. Various structural parameters of the gels such as number‐average molar mass between crosslink (Mc), the crosslink density (ρc), and the mesh size (ξ) were evaluated. The mesh sizes of the hydrogels were between 64 and 783 Å in the swollen state in acidic solution and 20 and 195 Å in the collapsed state in basic solution. The mesh size increased between three to four times during the pH‐dependent swelling process. The amount of unbound water (free water) and bound water of the gels was also evaluated using differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Hydrophilic and stimuli‐responsive submicronic latex particles based on polyalkyl(meth)acrylamide can be prepared owing to simple radical‐initiated polymerizations in heterogeneous media using a water‐soluble initiator and a crosslinker (methylenebisacrylamide). The paper aims at reviewing the synthesis and properties of functionalized polystyrene‐polyN‐isoprpylacrylamide core‐shell particles or polyN‐isopropylmethacrylamide microgel particles. Particle size of analysis showed that a short nucleation period afforded the synthesis of highly monodispersed latexes. The dramatic change of the colloidal properties (particle size, electrophoretic mobility) was found to reflect the thermal sensitivity of such particles. The hydrophilic nature of the particles below the volume phase transition temperature was found to drastically reduce the physical adsorption of proteins. Some examples of biomedical applications of these stimuli‐responsive particles are briefly reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号