首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The simultaneous sensing of Ceftriaxone (Cef) and Piroxicam (Pir) was presented in detail through the electrochemical method in which carbon paste electrode (CPE) was modified by meso-structured Zeolite for medical application. The results indicated a polycrystalline Zeolite phase with a relatively high surface contact for charge transportation in the sensing process. Electrochemical impedance spectroscopy (EIS) plots also showed better charge transportation parameters for the modified electrode. The effect of analytes concentration, in both individual and simultaneous states, on the electrochemical sensor quality parameters was investigated by different methods and the obtained results were thoroughly discussed.  相似文献   

2.
Nanocrystalline zeolites of different framework structures were prepared by the addition of suitable structure directing agents in the synthesis composition of conventional zeolites. Zeolite modified carbon paste electrodes were constructed for the simultaneous determination of dihydroxybenzene isomers. Nanocrystalline zeolite Beta modified carbon paste electrode exhibited the highest electrocatalytic activity. Under optimum conditions, wide linear range was obtained from 150 nM to 400 µM with lower detection limit of 100, 130, and 100 nM for hydroquinone, catechol, and resorcinol, respectively. The analytical performance of the proposed sensor was demonstrated in the simultaneous determination of dihydroxybenzene isomers in different environmental water samples.  相似文献   

3.
Explosive detection technologies play a critical role in maintaining national security, remain an active research field with many devices and analytical/electroanalytical techniques. Analytical chemistry needs for homeland defense against terrorism make it clear that real-time and on-site detection of explosives and chemical warfare agents (CWAs) are in urgent demand. Thus, current detection techniques for explosives have to be improved in terms of sensitivity and selectivity, opening the way to electrochemical devices suitable to obtain the targeted analytical information in a simpler, cheaper and faster way. For the electrochemical determination of energetic substances, a large number of sensor electrodes have been presented in literature using different modification materials, especially displaying higher selectivity with molecularly imprinted polymers (MIPs). MIPs have already been utilized for the detection of hazardous materials due to their mechanical strength, flexibility, long-time storage and low cost. The sensitivity of MIP-based electrosensors can be enhanced by coupling with nanomaterials such as graphene oxide (GOx), carbon nanotubes (CNTs), or nanoparticles (NPs). Specific characteristics of involved nanomaterials, their modification, detection mechanism, and other analytical aspects are discussed in detail. Non-MIP electrosensors are generally functionalized with materials capable of charge transfer, H-bonding or electrostatic interactions with analytes for pre-concentration and electrocatalysis on their surface, whereas nanobio-electrosensors use analyte-selective aptamers having specific sequences of DNA, peptides or proteins to change the potential or current. This review intends to provide a combination of information related to MIPs and nanomaterial-based electrochemical sensors, limited to the most significant and illustrative work recently published.  相似文献   

4.
《Electroanalysis》2017,29(4):1038-1048
Novel insights into the strategy of highly precise, carbon‐based electrochemical sensors are presented by exploring the excellent properties of graphene oxide (GO) and multiwalled carbon nanotube composites (GO‐MWCNTs/CPE) for the sensitive determination of tramadol hydrochloride (TRH). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) scanning electron microscopy, and X‐ray diffraction (XRD) techniques were used to characterize the properties of the sensor. The linear response obtained for TRH using the GO‐MWCNTs/CPE was found to be over the range of 2.0x10−9 to 1.1x10−3 M with a good linearity and high correlation (0.9996). The limits of detection and quantification were found to be 1.50x10−10 M and 4.99 x 10−10 M, respectively. The proposed sensor was applied for determination of TRH in the presence of presence of co‐formulated drugs ketorolac tromethamine (KTM) and paracetamol (PAR). The sensor was shown to successfully apply to the determination of TRH in plasma as real samples. Satisfactory recoveries of TRH from samples clearly revealed that the proposed sensor can be applied into clinical analysis, quality control and a routine determination of drugs in pharmaceutical formulations.  相似文献   

5.
In a 0.02 mol/L Na2HPO4-KH2PO4(PBS) buffer solution(pH=6.82), the electrochemical behavior of mitoxantrone was studied by linear-sweep voltammetry and cyclic voltammetry at a Pt/C ion implantation modified microelectrode. A sensitive reduction peak was observed. The peak potential was -0.72 V(vs.SCE), the peak current was proportional to the concentration of mitoxantrone within the ranges of 7.0×10-8-9.0×10-7 mol/L and 1.0×10-6-2.4×10-5 mol/L, with a detection limit of 4.0×10-8 mol/L. The linear correlation coefficients were 0.9994 and 0.9992, respectively. This method has been applied to the direct determination of mitoxantrone in simulated urine. The recoveries were in the range from 96.2% to 105.9%. The reduction process was a quasi-reversible one with adsorptive characteristics at the Pt/C microelectrode. The electrode reaction rate constant ks and the electron transfer coefficient α of the system were determined to be 4.5 and 0.65 s-1, respectively. The experiments showed that Pt element had surely been implanted into the surface of the carbon fiber, and the atomic Pt improved the electrocatalytic activity. The Pt/C microelectrode had a good stability and reproducibility.  相似文献   

6.
The electrochemical sensor was developed for determination of methadone (MTD) using multi‐walled carbon nanotubes (MWCNT) modified pencil graphite electrode (MWCNT‐PGE). It was found that the oxidation peak current of MTD at the MWCNT‐PGE was greatly improved compared with that of the bare‐PGE. At the MWCNT‐PGE, well‐defined anodic peak of MTD was observed at about 0.7 V (in pH 7 solution). The influence of several parameters on the determination of MTD was investigated. At optimum experimental conditions, differential pulse voltammetry (DPV) was used for determination of MTD, which exhibited a linear calibration graph of Ip versus MTD concentration in the range of 0.1–15 µM with a correlation coefficient of 0.9992. The calculated detection limit for S/N = 3 was 87 nM. It has been shown that the peaks obtained for oxidation of ascorbic acid (AA), uric acid (UA) and MTD in their mixture could be well resolved by differential pulse voltammetry, permitting us to develop a sensitive and selective electrochemical sensor for determination of MTD in the presence of AA and UA. Finally, MWCNT‐PGE was used for determination of MTD in biological samples, such as human serum and urine, using the standard addition procedure and the results were quite promising.  相似文献   

7.
In the present work, the electrochemical behavior of an antimigraine drug, almotriptan malate (ALM), on a multiwalled carbon nanotube (MWCNT) film modified glassy carbon electrode under cyclic voltammetry was described for the first time. A significant enhancement in the oxidation peak current of ALM was noticed at MWCNT‐GCE. This property was exploited to develop a simple, sensitive and time‐saving differential pulse voltammetric method for the determination of ALM in bulk and pharmaceutical samples. A linear relationship was observed between concentration and peak current with a correlation coefficient of 0.9915 in the range of 0.25–37.5 µM ALM.  相似文献   

8.
《Electroanalysis》2017,29(7):1762-1771
In this work we present the development of a simple handmade approach for the easy fabrication of three‐electrode electrochemical devices based on newly in‐house developed carbon ink composed of graphite powder and polystyrene. Different proportions of graphite/polystyrene were investigated for the optimization of the ink. The counter and reference electrodes were produced using commercial carbon ink and silver glue. Scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to investigate the morphology and the electrochemical properties of the sensor. The results showed that the electroactive area of the optimized working electrode was ca . 2.35 times larger than its geometric area. The RSD values obtained for repeatability and reproducibility were 0.20% and 2.78%, respectively, which suggest no significant variation on the electrodes fabricated. The analytical feasibility of the electrode was tested through its application for the determination of nitrite in drinking water. The quantifications were successfully performed at levels below the maximum contaminant level established for nitrite. A limit of detection of 1.42 × 10−6 mol L−1 and recoveries of ca . 103 % were achieved. The results were validated using ion‐chromatography technique with good agreement. The performance of the unmodified sensor proposed here on nitrite determination was better than some recently reported modified electrodes obtained through complex procedures.  相似文献   

9.
A novel electro‐active compound, TCAC , is synthesized and its electrochemical polymerized film is used to detect 2,4,6‐trinitrotoluene (TNT) and 2,4‐dinitrotoluene (DNT) explosives through a fluorometric/electrochemical dual‐channel sensor with high sensitivity and selectivity. In particular, the electrochemical sensor for the analysis of TNT had an enhanced sensitivity of 0.5 μM . The detection limit of the sensor was calculated to be 15 nM .  相似文献   

10.
基于微加工技术(Microfabrication technology)制备微传感电极并进行电化学表面修饰,研制出一种用于水体中NO#3浓度检测的电化学微传感器。微传感器以两电极传感芯片为信号转换部件,使用电流脉冲沉积法在铂质工作电极表面制备微观形貌呈枝簇状的铜质敏感材料,利用铜质材料对酸性溶液中NO#3的电催化还原特性,测量还原电流的大小,实现对NO#3浓度的检测。采用扫描电子显微镜(SEM)和X射线衍射分析(XRD)技术对敏感膜进行表征和监测,探索高活性铜质敏感膜的制备方法;使用微传感器对硝酸盐标准样品进行检测,在低浓度范围(12.5~200μmol/L),响应灵敏度为0.1422μA/(μmol/L);高浓度范围(200~3000μmol/L),响应灵敏度为0.0984μA/(μmol/L),均表现出较高的检测灵敏度;使用微传感器对北京等地的实际湖库水样进行检测,结果与专业水质检测机构采用紫外分光光度法的测试结果偏差在#3.9%~15.4%之间,两者具有一定的相关性,表明微传感器能够用于实际水样中NO#3浓度的测量。  相似文献   

11.
A new chemically modified electrode is constructed based on an iron(III) doped zeolite modified carbon paste electrode (Fe3+Y/ZCME). The electrode was evaluated as a sensor for sub‐micromolar determination of tryptophan (Trp) and dopamine (DA). The measurements were carried out using the differential pulse voltammetry (DPV) method in a phosphate buffer solution with pH = 5. The prepared modified electrode shows voltametric responses with high sensitivity and stability for DA and Trp in optimal conditions. The analytical performance of this sensor has been evaluated for detection of DA and Trp in human serum.  相似文献   

12.
海水重金属电化学传感器检测系统   总被引:3,自引:0,他引:3  
研制了一种新型的海水重金属电化学传感器流动分析系统.通过在线过滤、紫外线消解、电化学富集以及离子选择性电极电位测定等过程,实现对海水重金属的高灵敏、高选择性的快速检测.在海水基体条件下,对于镉、铅和铜的测定线性范围分别为1.0×10-9~1.0×10-7 mol/L,3.0×10-9~1.0×10-7 mol/L和1.0×10-9~1.0× 10-7 mol/L,相应检出限为2.8×10-10,6.6×10-10和5.1×10-10 mol/L,连续6次测定的RSD均小于5%,全程分析在25 min内完成.应用于实际海水样品分析,其测定结果与溶出伏安法一致.此传感器性能可靠、成本低廉,在海水重金属现场快速监测方面具有良好的应用前景.  相似文献   

13.
Three reduced graphene oxide nanocomposites were employed to achieve the simultaneous electrochemical determination of multi-drugs including acetaminophen (ACTM), carbendazim (CB) and ciprofloxacin (CFX). All nanocomposite modified electrodes showed improved current responses for three drugs. Notably cauliflower-like platinum nanoparticles decorated reduced graphene oxide modified electrode (or Pt−RGO/GCE) exhibited the best performance in terms of electrochemical stability. Using Pt−RGO/GCE, the linear detect ranges of 30–120 μM, 25–115 μM and 10–25 μM, and detection limit values of 3.49, 2.96, and 1.53 μM were achieved for ACTM, CB and CFX respectively. The electrode was further used for the successful determination of above drugs in tap and river water using differential pulse voltammetry. From the obtained results, we believe that Pt-RGO/GCE is highly promising for the fabrication of robust electrochemical sensors for simultaneously determining ACTM, CB and CFX or similar types of drugs in the future.  相似文献   

14.
对NO生理作用的新认识及其电化学实时检测   总被引:8,自引:0,他引:8  
本文综述了近年来学术界对NO生理作用的新认识,并介绍了现场实时检测生物活体中释放的NO浓度的电化学方法.  相似文献   

15.
《Analytical letters》2012,45(6):996-1014
A novel electrochemical sensor for bisphenol A was developed through the combination of a molecular imprinting technique with a multiwalled carbon nanotube paste electrode. A molecularly imprinted polymer and nonimprinted polymer were synthesized in the presence and absence of bisphenol A, and then used to prepare the electrode. The bisphenol A imprinted polymer was applied as a selective recognition element in the electrochemical sensor. Differential pulse voltammetry was used to characterize the electrochemical behavior of bisphenol A at the modified electrodes. The results showed that the imprinted sensor had highest response for bisphenol A. Parameters including the carbon paste composition, pH, and adsorption time for the imprinted sensor were optimized. Under the optimized conditions, the differential pulse voltammetry peak current was linear with the concentration of bisphenol A from 0.08 to 100.0 µM, with a detection limit of 0.022 µM. The imprinted sensor for bisphenol A exhibited good selectivity, stability, and reproducibility. This sensor was successfully used for the determination of bisphenol A in real water samples.  相似文献   

16.
《Electroanalysis》2017,29(10):2307-2315
A disposable sandwich‐type electrochemical sensor for selective detection of glucose was established. The primary receptor, 3‐aminophenylboronic acid was grafted covalently onto the surface of screen‐printed carbon electrodes through an in situ‐generated diazo‐reaction. Glucose was first captured by boronic acid group on the electrode, followed by captureing an electroactive ferroceneboronic acid (FcBA) as the secondary receptor to form bidentate glucose‐boronic complex. Electrochemical impedance spectroscopy was applied to characterize the construction of sandwich‐type disposable sensor. In the sandwich assay, current response of captured FcBA on the electrode was dependent on the concentration of glucose. The sandwich assay showed higher selectivity for glucose than that for fructose, mannose, galactose and other electroactive interferences including uric acid, ascorbic acid and dopamine, and exhibited a dynamic concentration range of glucose from 0.5 to 20.0 mmol L−1. The disposable sensor demonstrated a good reproducibility with 2.2 % relative standard deviation (RSD). In addition, the disposable glucose sensor was used in detection of the trace glucose in the clinical urine samples.  相似文献   

17.
In this work, an electrochemical sensor based on Ni3S2 nanoparticles supported on porous ball‐milled silicon was fabricated for measuring glucose. At first, the glassy carbon electrode (GCE) surface was modified by Ni3S2 nanoparticles supported on a porous ball‐milled silicon substrate. To characterize the modified electrode, N2 adsorption‐desorption isotherms and BHJ, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDX), elemental mapping and X‐ray diffraction (XRD) were used. In the following, the effective parameters on the sensor response such as pH, NaOH concentration, catalyst concentration, applied potential, and rotational speed of the electrode were optimized using cyclic voltammetric (CV) and hydrodynamic amperometric methods. Under the optimal conditions, the calibration curve was plotted using the hydrodynamic amperometric method. Three linear regions were obtained from 0.5–134, 134–1246, and 1246–3546 μM, with a detection limit of 0.2 μM for glucose. Finally, the proposed method was used for measuring glucose levels in human blood serums.  相似文献   

18.
Herein, a portable and cost-effective electrochemical sbased on Silver/tannic acid/titanium dioxide/glassy carbon electrode (Ag/TA@ TiO2/GCE) was fabricated to determine timolol(TM) assay. The Ag/TA@TiO2/GCE offered an irreversible oxidation peak at +0.99 V, and exhibited an extraordinary electrochemical performance with a wide linear working ranges from 0.01–0.84 and 0.84–49.0 μM and a low detection limit of 5.2 nM. The detection of TM in the presence of interfering agents and real samples was also analyzed. The sensor‘s selectivity was studied by comparing the binding of TM, propranolol, nebivolol, and metoprolol. The developed electrochemical sensing platform could have promising potential for the determination of TM in clinical samples.  相似文献   

19.
This paper describes the electrochemical determination of vitamin D2 (ergocalciferol) and D3 (cholecalciferol) in mixed organic/water solvent, using a glassy carbon electrode (GCE). The mixing ratio of organic/water solvent has an important influence on the electrocatalytic response of D vitamins on the surface of the glassy carbon electrode. Well‐defined peaks for Vitamin D2 and D3 were observed in a 40 % ethanol/60 % water solution with lithium perchlorate as the support electrolyte. This study demonstrated that the glassy carbon electrode is highly sensitive for the determination of vitamin D2 and D3, with a limit of detection of 0.13 and 0.118 µmol L?1, respectively. No significant interference was seen for vitamins A, E and K in the detection of vitamin D.  相似文献   

20.
测定血红蛋白的一种电化学分析方法   总被引:4,自引:0,他引:4  
血红蛋白可以在微裸银电极上的得到电流响应。蛋白质溶液中加入适量的十二烷基硫酸钠,血红蛋白峰电流明显增大,峰形对称,可直接用于血红蛋白的分析测定,实验发现,在5.0×10^-7--5.0×10^-8mol/L浓度范围,血红蛋白经峰电流与其呈正比,用于人体血样中血红蛋白的测定与光度法结果一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号