首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CRISPR/Cas9 system is a powerful toolbox for gene editing. However, the low delivery efficiency is still a big hurdle impeding its applications. Herein, we report a strategy to deliver Cas9‐sgPlk‐1 plasmids (CP) by a multifunctional vehicle for tumor therapy. We condensed CPs on TAT peptide‐modified Au nanoparticles (AuNPs/CP, ACP) via electrostatic interactions, and coated lipids (DOTAP, DOPE, cholesterol, PEG2000‐DSPE) on the ACP to form lipid‐encapsulated, AuNPs‐condensed CP (LACP). LACP can enter tumor cells and release CP into the cytosol by laser‐triggered thermo‐effects of the AuNPs; the CP can enter nuclei by TAT guidance, enabling effective knock‐outs of target gene (Plk‐1) of tumor (melanoma) and inhibition of the tumor both in vitro and in vivo. This AuNPs‐condensed, lipid‐encapsulated, and laser‐controlled delivery system provides a versatile method for high efficiency CRISPR/Cas9 delivery and targeted gene editing for treatment of a wide spectrum of diseases.  相似文献   

2.
Noninvasive regulation of CRISPR/Cas9 gene editing is conducive to understanding of gene function and development of gene therapy; however, it remains challenging. Herein, a photolabile semiconducting polymer nanotransducer (pSPN) is synthesized to act as the gene vector to deliver CRISPR/Cas9 plasmids into cells and also as the photoregulator to remotely activate gene editing. pSPN comprises a 1O2‐generating backbone grafted with polyethylenimine brushes through 1O2‐cleavable linkers. NIR photoirradiation spontaneously triggers the cleavage of gene vectors from pSPN, resulting in the release of CRISPR/Cas9 plasmids and subsequently initiating gene editing. This system affords 15‐ and 1.8‐fold enhancement in repaired gene expression relative to the nonirradiated controls in living cells and mice, respectively. As this approach does not require any specific modifications on biomolecular components, pSPN represents the first generic nanotransducer for in vivo regulation of CRISPR/Cas9 gene editing.  相似文献   

3.
The RNA-guided endonuclease clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) derived from CRISPR systems is a simple and efficient genome-editing technology applied to various cell types and organisms. So far, the extensive approach to detect the cleavage activity of customized Cas9/guide RNA (gRNA) is T7 endonuclease I (T7EI) assay, which is time and labor consuming. In this study, we developed a visualized fluorescent reporter system to detect the specificity and cleavage activity of gRNA. Two gRNAs were designed to target porcine immunoglobulin M and nephrosis 1 genes. The cleavage activity was measured by using the traditional homology-directed repair (HDR)-based fluorescent reporter and the single-strand annealing (SSA)-based fluorescent reporter we established in this study. Compared with the HDR assay, the SSA-based fluorescent reporter approach was a more efficient and dependable strategy for testing the cleavage activity of Cas9/gRNA, thereby providing a universal and efficient approach for the application of CRISPR/Cas9 in generating gene-modified cells and organisms.  相似文献   

4.
As a powerful gene editing tool, the kinetic mechanism of CRISPR/Cas9 has been the focus for its further application. Initial cleavage events as the first domino followed by nuclease end trimming significantly affect the final on-target rate. Here we propose EC-CRISPR, element coding CRISPR, an accurate evaluation platform for initial cleavage that directly characterizes the cleavage efficiency and breaking sites. We benchmarked the influence of 19 single mismatch and 3 multiple mismatch positions of DNA-sgRNA on initial cleavage, as well as various reaction conditions. Results from EC-CRISPR demonstrate that the PAM-distal single mismatch is relatively acceptable compared to the proximal one. And multiple mismatches will not only affect the cleavage efficiency, but also generate more non-site #3 cleavage. Through in-depth research of kinetic behavior, we uncovered an abnormally higher non-#3 proportion at the initial stage of cleavage by using EC-CRISPR. Together, our results provided insights into cleavage efficiency and breaking sites, demonstrating that EC-CRISPR as a novel quantitative platform for initial cleavage enables accurate comparison of efficiencies and specificities among multiple CRISPR/Cas enzymes.

Initial cleavage events as the first domino of CRISPR/Cas9 kinetic behaviors. To accurately evaluate the initial cleavage of Cas9, element coding CRISPR platform-enabled direct characterization of the cleavage efficiency and cleavage sites was proposed.  相似文献   

5.
A new method of detecting and diagnosing melanoma based on melanoma biomarker was developed and its feasibility demonstrated. The method is based on an electrochemical biosensor platform comprised of a special biochip and device, performing a multi‐channel amperometric detection of the enzymatic activity of tyrosinase, an enzyme biomarker of melanoma. The newly developed biosensor platform is able to electrochemically detect tyrosinase activity in fresh biopsy samples. This bioelectrochemical detection method is rapid, yielding results within minutes from biopsy removal. Using “as is” biopsy samples, without pretreatment, simplifies the process, saves time and reduces cost and labor dramatically. Using modern portable microelectronics provides an accurate biomarker expression measurement at the “point of care” increasing the accessibility of new bio‐chip technologies to the public.  相似文献   

6.
7.
Point‐of‐care (PoC) biosensors offer promising solutions to today's adverse and costly healthcare issues by moving diagnostic tools closer to the patient. The ubiquity of smartphones has brought about an emergence of PoC devices, which leverage the smartphone's capabilities, enabling the creation of low‐cost and portable biosensors. Electrochemical biosensors are well suited for PoC testing since the transducers can be miniaturized and inexpensively fabricated. This review paper discusses recent developments in smartphone‐based electrochemical biosensors for PoC diagnostics. These peripherals utilize the various connectivity options (for example proprietary ports, audio headphone‐jack, or wireless radio) to offload functionality to the smartphone. The smartphone‐based implementations of various electrochemical techniques, such as amperometry, potentiometry, and impedance spectroscopy are explored. Major challenges include reducing power, area, and cost of measurement circuitry, while maintaining adequate performance for PoC diagnostic applications.  相似文献   

8.
A number of very recently developed electrochemical biosensing strategies are promoting electrochemical biosensing systems into practical point‐of‐care applications. The focus of research endeavors has transferred from detection of a specific analyte to the development of general biosensing strategies that can be applied for a single category of analytes, such as nucleic acids, proteins, and cells. In this Minireview, recent cutting‐edge research on electrochemical biosensing strategies are described. These developments resolved critical challenges regarding the application of electrochemical biosensors to practical point‐of‐care systems, such as rapid readout, simple biosensor fabrication method, ultra‐high detection sensitivity, direct analysis in a complex biological matrix, and multiplexed target analysis. This Minireview provides general guidelines both for scientists in the biosensing research community and for the biosensor industry on development of point‐of‐care system, benefiting global healthcare.  相似文献   

9.
10.
Several genome engineering applications of CRISPR‐Cas9, an RNA‐guided DNA endonuclease, require precision control of Cas9 activity over dosage, timing, and targeted site in an organism. While some control of Cas9 activity over dose and time have been achieved using small molecules, and spatial control using light, no singular system with control over all the three attributes exists. Furthermore, the reported small‐molecule systems lack wide dynamic range, have background activity in the absence of the small‐molecule controller, and are not biologically inert, while the optogenetic systems require prolonged exposure to high‐intensity light. We previously reported a small‐molecule‐controlled Cas9 system with some dosage and temporal control. By photocaging this Cas9 activator to render it biologically inert and photoactivatable, and employing next‐generation protein engineering approaches, we have built a system with a wide dynamic range, low background, and fast photoactivation using a low‐intensity light while rendering the small‐molecule activator biologically inert. We anticipate these precision controls will propel the development of practical applications of Cas9.  相似文献   

11.
Single nucleotide polymorphisms (SNPs) are associated with many human diseases, so accurate and efficient SNP detection is of great significance for early diagnosis and clinical prognosis. This report proposes a universal and high-fidelity genotyping method in microfluidic point-of-care equipment based on the clustered regularly interspaced short palindromic repeat (CRISPR) system. Briefly, by systematically inserting the protospacer-adjacent-motif (PAM) sequence, we improved the universality of the CRISPR/Cas12a based SNP detection; by removing the complementary ssDNA and introducing an additional nucleotide mismatch, we improved the sensitivity and specificity. We preloaded the CRISPR/Cas12a reagents into the point-of-care biochip for automating the process, increasing the stability and long-term storage. This biochip enables us to rapidly and conveniently detect the genotypes within 20 min. In a practical application, the CRISPR/Cas12a biochip successfully distinguished three genotypes (homozygous wild type; the homozygous mutant type; and the heterozygous mutant type) of the CYP1A1*2 (A4889G, rs1048943), CYP2C19*2 (G681A, rs4244285), CYP2C9*3 (A1075C, rs1057910), and CYP2C19*3 (G636A, rs4986893) genes related to multiple cancers from 17 clinical blood samples. This CRISPR/Cas12a-based SNP genotyping method, being universal, accurate, and sensitive, will have broad applications in molecular diagnostics and clinical research.

A universal and high-fidelity genotyping method based on the clustered regularly interspaced short palindromic repeat (CRISPR) system was performed on the microfluidic point-of-care equipment.  相似文献   

12.
CRISPR–Cas9 represents a promising platform for genome editing, yet means for its safe and efficient delivery remain to be fully realized. A novel vehicle that simultaneously delivers the Cas9 protein and single guide RNA (sgRNA) is based on DNA nanoclews, yarn‐like DNA nanoparticles that are synthesized by rolling circle amplification. The biologically inspired vehicles were efficiently loaded with Cas9/sgRNA complexes and delivered the complexes to the nuclei of human cells, thus enabling targeted gene disruption while maintaining cell viability. Editing was most efficient when the DNA nanoclew sequence and the sgRNA guide sequence were partially complementary, offering a design rule for enhancing delivery. Overall, this strategy provides a versatile method that could be adapted for delivering other DNA‐binding proteins or functional nucleic acids.  相似文献   

13.
The ability to remotely trigger CRISPR/Cas9 activity would enable new strategies to study cellular events with greater precision and complexity. In this work, we have developed a method to photocage the activity of the guide RNA called “CRISPR‐plus” (CRISPR‐precise light‐mediated unveiling of sgRNAs). The photoactivation capability of our CRISPR‐plus method is compatible with the simultaneous targeting of multiple DNA sequences and supports numerous modifications that can enable guide RNA labeling for use in imaging and mechanistic investigations.  相似文献   

14.
We have developed an ingenious method, termed Cas9 nickase‐based amplification reaction (Cas9nAR), to amplify a target fragment from genomic DNA at a constant temperature of 37 °C. Cas9nAR employs a sgRNA:Cas9n complex with a single‐strand nicking property, a strand‐displacing DNA polymerase, and two primers bearing the cleavage sequence of Cas9n, to promote cycles of DNA replication through priming, extension, nicking, and displacement reaction steps. Cas9nAR exhibits a zeptomolar limit of detection (2 copies in 20 μL of reaction system) within 60 min and a single‐base discrimination capability. More importantly, the underlying principle of Cas9nAR offers simplicity in primer design and universality in application. Considering the superior sensitivity and specificity, as well as the simple‐to‐implement, rapid, and isothermal features, Cas9nAR holds great potential to become a routine assay for the quantitative detection of nucleic acids in basic and applied studies.  相似文献   

15.
Customizable nanostructures built through the DNA‐origami technique hold tremendous promise in nanomaterial fabrication and biotechnology. Despite the cutting‐edge tools for DNA‐origami design and preparation, it remains challenging to separate structural components of an architecture built from—thus held together by—a continuous scaffold strand, which in turn limits the modularity and function of the DNA‐origami devices. To address this challenge, here we present an enzymatic method to clean up and reconfigure DNA‐origami structures. We target single‐stranded (ss) regions of DNA‐origami structures and remove them with CRISPR‐Cas12a, a hyper‐active ssDNA endonuclease without sequence specificity. We demonstrate the utility of this facile, selective post‐processing method on DNA structures with various geometrical and mechanical properties, realizing intricate structures and structural transformations that were previously difficult to engineer. Given the biocompatibility of Cas12a‐like enzymes, this versatile tool may be programmed in the future to operate functional nanodevices in cells.  相似文献   

16.
In this article, we detail a paper‐based three‐electrode electrochemical biosensor using a mitochondria modified Toray carbon paper working electrode. Cyclic voltammetry performed on the paper‐based biosensor and similar electrodes in a common laboratory setup (not in an integrated paper‐based device) compare favorably. In addition, instant detection of malathion with a detection limit of 20 nM by cyclic voltammetry is demonstrated, showing the device can potentially be used as a portable platform for pesticides detection.  相似文献   

17.
Currently CRISPR/Cas9 is a widely used efficient tool for gene editing. Precise control over the CRISPR/Cas9 system with high temporal and spatial resolution is essential for studying gene regulation and editing. Here, we synthesized a novel light-controlled crRNA by coupling vitamin E and a photolabile linker at the 5′ terminus to inactivate the CRISPR/Cas9 system. The vitamin E modification did not affect ribonucleoprotein (RNP) formation of Cas9/crRNA/tracrRNA complexes but did inhibit the association of RNP with the target DNA. Upon light irradiation, vitamin E-caged crRNA was successfully activated to achieve light-induced genome editing of vascular endothelial cell-growth factor A (VEGFA) in human cells through a T7E1 assay and Sanger sequencing as well as gene knockdown of EGFP expression in EGFP stably expressing cells. This new caging strategy for crRNA could provide new methods for spatiotemporal photoregulation of CRISPR/Cas9-mediated gene editing.  相似文献   

18.
We developed a new method for the conditional regulation of CRISPR/Cas9 activity in mammalian cells and zebrafish embryos using photochemically activated, caged guide RNAs (gRNAs). Caged gRNAs are generated by substituting four nucleobases evenly distributed throughout the 5′‐protospacer region with caged nucleobases during synthesis. Caging confers complete suppression of gRNA:dsDNA‐target hybridization and rapid restoration of CRISPR/Cas9 function upon optical activation. This tool offers simplicity and complete programmability in design, high spatiotemporal specificity in cells and zebrafish embryos, excellent off‐to‐on switching, and stability by preserving the ability to form Cas9:gRNA ribonucleoprotein complexes. Caged gRNAs are novel tools for the conditional control of gene editing, thereby enabling the investigation of spatiotemporally complex physiological events by obtaining a better understanding of dynamic gene regulation.  相似文献   

19.
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system is best known for its role in genomic editing. It has also demonstrated great potential in nucleic acid biosensing. However, the specificity limitation in CRISPR/Cas has created a hurdle for its advancement. More recently, nucleic acid aptamers known for their high affinity and specificity properties for their targets have been integrated into CRISPR/Cas systems. This review article gives a brief overview of the aptamer and CRISPR/Cas technology and provides an updated summary and discussion on how the two distinctive nucleic acid technologies are being integrated into modern diagnostic and therapeutic applications  相似文献   

20.
CRISPR/Cas is a revolutionary gene editing technology with wide‐ranging utility. 1 The safe, non‐viral delivery of CRISPR/Cas components would greatly improve future therapeutic utility. 1e We report the synthesis and development of zwitterionic amino lipids (ZALs) that are uniquely able to (co)deliver long RNAs including Cas9 mRNA and sgRNAs. ZAL nanoparticle (ZNP) delivery of low sgRNA doses (15 nm ) reduces protein expression by >90 % in cells. In contrast to transient therapies (such as RNAi), we show that ZNP delivery of sgRNA enables permanent DNA editing with an indefinitely sustained 95 % decrease in protein expression. ZNP delivery of mRNA results in high protein expression at low doses in vitro (<600 pM) and in vivo (1 mg kg−1). Intravenous co‐delivery of Cas9 mRNA and sgLoxP induced expression of floxed tdTomato in the liver, kidneys, and lungs of engineered mice. ZNPs provide a chemical guide for rational design of long RNA carriers, and represent a promising step towards improving the safety and utility of gene editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号