首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self‐assembled metallosupramolecular architectures (MSAs) with built‐in functionalities such as light‐harvesting metal centers are a promising approach for developing emergent properties within discrete molecular systems. Herein we describe the synthesis of two new but simple “click” ligands featuring a bidentate 2‐pyridyl‐1,2,3‐triazole chelate pocket linked to a monodentate pyridyl (either 3‐ or 4‐substituted, L1 and L2 ) unit. The ligands and the corresponding four PdIIand PtIImetallo‐ligands ( Pd1 , Pd2 , Pt1 and Pt2 ) were synthesized and characterized using nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI‐MS), and X‐ray crystallography. Solid‐state characterization of the series of ligands and metallo‐ligands revealed that these compounds display a co‐planar conformation of all the aryl units. The PtIIcontaining metallo‐ligands ( Pt1 and Pt2 ) were found to assemble into square ( Sqr ) and triangular ( Tri ) shaped architectures when combined with neutral PdCl2 linker units. Additionally, the ability of the PtIImetallo‐ligands and Tri to photocatalyze the cycloaddition of singlet oxygen to anthracene was investigated.  相似文献   

2.
Two copper(I)‐based frameworks of complexes {[Cu(L)2(ClO4)]?CH3CN}( 2 ) and {[Cu(L)(ClO4)]? 2CH3CN} ( 3 ) (L = 1,3,5‐tris(4‐pyridylethynyl) benzene) were produced by reacting [Cu(MeCN)4(ClO4)] with different amounts of a ligand (L) using a hydrothermal method at temperatures of up to 130°C. The nitrogen atoms in the pyridine moieties of the ligand coordinate to the Cu(I) ion. The charge on the Cu(I) ion can be stabilized by extending the degree of conjugation in the system and by taking advantage of its highly symmetrical structure. The large degree of conjugation also supports numerous π–π interactions in the framework.  相似文献   

3.
The mononuclear lead(II) complex of formula [PbI2(DPPZ)2] (DPPZ = dipyrido[3,2,‐a:2′,3′‐c]phenazine) has two‐fold symmetry and features a distorted octahedral geometry for lead defined by an N4I2 donor set. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(tricyanomethanido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P , with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H…N and C—H…N hydrogen bonds and π–π stacking interactions generates three‐dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres.  相似文献   

5.
In the dinuclear molecule of [(C5H4N)3N]2CdCl2CdCl2, one cadmium is octahedrally coordinated by a Cl2N4 donor set and the other cadmium is tetrahedrally coordinated by four chlorine atoms. The dinuclear units are connected by π–π interactions to give a two‐dimensional network. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The zinc(II) atom in the molecule of [(C5H4N)3N]ZnI2 is tetrahedrally coordinated to two nitrogen atoms of the tris(2‐pyridyl)amine ligand and two iodides. The coordination moieties are connected to give a linear structure by intermolecular π–π interactions between the pyridyl rings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

8.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

9.
The blue copper complex [Cu2(H2O)2(phen)2(OH)2][Cu2(phen)2(OH)2(CO3)2] · 10 H2O, which was prepared by reaction of 1,10‐phenanthroline monohydrate, CuCl2 · 2 H2O and Na2CO3 in the presence of succinic acid in CH3OH/H2O at pH = 13.0, crystallized in the triclinic space group P1 (no. 2) with cell dimensions: a = 9.515(1) Å, b = 12.039(1) Å, c = 12.412(2) Å, α = 70.16(1)°, β = 85.45(1)°, γ = 81.85(1)°, V = 1323.2(2) Å3, Z = 1. The crystal structure consists of dinuclear [Cu2(H2O)2(phen)2(OH)2]2+ complex cations, dinuclear [Cu2(phen)2(OH)2(CO3)2]2– complex anions and hydrogen bonded H2O molecules. In both the centrosymmetric dinuclear cation and anion, the Cu atoms are coordinated by two N atoms of one phen ligand, three O atoms of two μ‐OH groups and respectively one H2O molecule or one CO32– anion to complete distorted [CuN2O3] square‐pyramids with the H2O molecule or the CO32– anion at the apical position (equatorial d(Cu–O) = 1.939–1.961 Å, d(Cu–N) = 2.026–2.051 Å and axial d(Cu–O) = 2.194, 2.252 Å). Two adjacent [CuN2O3] square pyramids are condensed via two μ‐OH groups. Through the interionic hydrogen bonds, the dinuclear cations and anions are linked into 1D chains with parallel phen ligands on both sides. Interdigitation of phen ligands of neighboring 1D chains generated 2D layers, between which the hydrogen bonded water molecules are sandwiched.  相似文献   

10.
11.
The complexes [Pt(tpp)] (H2tpp=tetraphenylporphyrin), [M(acac)2] (M=Pd, Pt, Hacac=acetylacetone), and [Pd(ba)2] (Hba=benzoylacetone) were co‐crystallized with highly electron‐deficient arene systems to form reverse arene sandwich structures built by π‐hole???[MII] (d8M=Pt, Pd) interactions. The adduct [Pt(tpp)]?2 C6F6 is monomeric, whereas the diketonate 1:1 adducts form columnar infinity 1D‐stack assembled by simultaneous action of both π‐hole???[MII] and C???F interactions. The reverse sandwiches are based on noncovalent interactions and calculated ESP distributions indicate that in π‐hole???[MII] contacts, [MII] plays the role of a nucleophile.  相似文献   

12.
The dimesitylplatinum(II) complex PtMes2(dppz) (Mes = mesityl = 2,4,6-trimethylphenyl) crystallizes with one equivalent of toluene (C43H40N4Pt, monoclinic, P21/c, Z = 4, a = 14.3551(14) Å, b = 15.8319(14) Å, c = 15.369(2) Å, β = 96.784(6)°). The (dppz)Pt(C1Mes)2 part of the molecule was found to be planar, the mesityl substituents adopting dihedral angles of 70.3° and 85.5° with that plane. The photoemissive and reversibly reducible and oxidizable complex molecules form pairs in the crystal with the planar phenazine π “tails” overlapping in graphite-like fashion at 3.427 Å distance. The results are discussed in comparision with a recently reported structure of PtCl2(dppz).  相似文献   

13.
Dioxobis(pyridine‐2‐thiolate‐N, S)molybdenum(VI) (MoO2(Py‐S)2), reacts with of 4‐methylpyridine (4‐MePy) in acetonitrile, by slow diffusion, to afford the title compound. This has been characterized by elemental analysis, IR and 1H NMR spectroscopy. The X‐ray single crystal structure of the complex is described. Structural studies reveal that the molecular structure consists of a β‐Mo8O26 polyanion with eight MoO6 distorted edge‐shared octahedra with short terminal Mo–O bonds (1.692–1.714 Å), bonds of intermediate length (1.887–1.999 Å) and long bonds (2.150–2.473 Å). Two different types of hydrogen bonds have been found: N–H···O (2.800–3.075 Å) and C–H···O (3.095–3.316 Å). The presence of π–π stacking interactions and strong hydrogen bonds are presumably responsible for the special disposition of the pyridinic rings around the polyanion cluster.  相似文献   

14.
A series of main‐chain metallopolymers ( P1–P10 ) was prepared by the self‐assembly of rigid‐linear π‐conjugated bis(terpyridine) monomers ( 1–10 ) with ZnII ions and was fully characterized. The polymerization was additionally confirmed by UV/vis titration experiments. A strong increase in viscosities (around 1.6 times) relative to those of the monomer solutions was found. The thermal stability of P1–P10 compared with that of 1–10 was enhanced as a result of the metallopolymerization. The electro‐optical properties of the materials were investigated in detail. Tuning of the electrochemical and photophysical properties was enabled; thus, bright purple to green photoluminescent (PL) emission (PL quantum yields of 0.12–0.81) for P1–P10 was observed in solution with the emission color strongly depending on the nature of the π‐conjugated bis(terpyridine) system. Thin homogeneous films of P6 were prepared by solution processing, that is, spin‐coating and inkjet‐printing, and exhibited intense yellow PL emission in the solid state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4083–4098, 2009  相似文献   

15.
A series of neutral complexes, namely, [N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐hydroxysalicylideneiminato]‐ diphenyltin(IV) ( Ia ), [N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐methoxysalicylideneiminato]diphenyltin(IV) ( IIa ) and [N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐ethoxysalicylideneiminato]diphenyltin(IV) ( IIIa ) were prepared by the reaction of diphenyltin dichloride on the corresponding Schiff bases. The Schiff bases were the reaction products of 2‐hydroxy‐4‐nitroaniline and appropriate salicylaldehydes. All the compounds were characterized by elemental analysis, 1H‐NMR, 13C‐NMR, IR and mass spectroscopy. Compound IIIa was also characterized by single crystal X‐ray diffraction and shows a C2NO2 coordination geometry nearly half‐way between a trigonal bipyramidal and square pyramidal arrangement. In the solid state, π? π interactions exist between the aniline fragments of neighbouring molecules. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

17.
Two new compounds, [Ag(Hppdb)]n ( 1 ) and {[Ag2(Hppdb)2(bpe)] · 5.5H2O}n( 2 ) [H2ppdb = [2,3‐f]pyrazino[1,10]phenanthroline‐2,3‐dicarboxylic acid, bpe = trans‐1,2‐bis(4‐pyridyl)ethylene], were synthesized and characterized. In 1 , Hppdb ions link AgI cations to form an infinite 1D [–Ag–(Hppdb)–Ag–]n chain, furthermore, the dimensionality is extended to 2D layers through synergistic π–π stacking, hydrogen‐bonding and weak Ag ··· O interactions. Correspondingly, the dimeric [(Ag)(Hppdb)]2 subunits in 2 are connected by bpe ligands to generate a loop‐link‐shaped 1D chain motif, which is further joined through a R22(18)C–H ··· O hydrogen‐bonding ring to afford interesting diagonal/diagonal inclined catenation 2D + 2D → 3D supramolecular architectures. In addition, solid‐state properties such as photoluminescence and thermal stability of the two compounds were studied.  相似文献   

18.
The salts [Cu(phen)3][Cu(pheida)2]·10H2O ( 1 ) and [(phen)2Cu(μ‐BAAP)Cu(μ‐BAAP)Cu(phen)2][Cu(BAAP)2]·8.5H2O ( 2 ) (H2pheida = N‐phenetyl‐iminodiacetic acid, H2BAAP = N‐benzylaminoacetic‐2‐propionic acid, phen = 1, 10‐phenanthroline) have been prepared and studied by thermal, spectroscopic and X‐ray diffraction methods. 1 has the rather unusual [Cu(phen)3]2+ cation and two non‐equivalent [Cu(pheida)2]2— anions with a coordination type 4+2 but quite different tetragonality (T = 0.848 and 0.703 for anions 1 and 2, respectively). The crystal consists of multi‐π, π‐stacked chains (…anion 2 — cation — cation — anion 2…) connected by hydrophobic interactions; these chains build channels which are partially filled by anions 1 and water molecules. In contrast, compound 2 has a mixed‐ligand trinuclear cation with a bridging central moiety close similar to the counter anion. The formation of such a trinuclear cation is discussed as a consequence of the most advantageous molecular recognition process between [Cu(phen)2(H2O)1 or 2]2+ and [Cu(BAAP)2]2— in solution. In the crystal of 2, multi‐π, π‐stacked arrays of C6‐rings from phen and (BAAP)2— ligands of trinuclear cations generate channels where counter anions and water molecules are located.  相似文献   

19.
Two new mixed‐anion zinc(II) and cadmium(II) complexes of 3‐(2‐pyridyl)‐5,6‐diphenyl‐1,2,4‐triazine (PDPT) ligand, [Zn(PDPT)2Cl(ClO4)] and [Cd(PDPT)2(NO3)(ClO4)], have been synthesized and characterized by elemental analysis, IR‐ and 1H NMR spectroscopy. The single crystal X‐ray analyses show that the coordination number in these complexes is six with four N‐donor atoms from two “PDPT” ligand and two of the anionic ligands, ZnN4ClOperchlorate, CdN4OnitrateOperchlorate. Self‐assembly of these compounds in the solid state via ππ‐stacking interactions is discussed.  相似文献   

20.
Two mixed ligand ZnII complexes [Zn(phen)L2/2](H2L) ( 1 ) and [(phen)2Zn(μ‐L)Zn(phen)2]L � 11H2O ( 2 ) with H2L = suc‐cinic acid were prepared and crystallographically characterized. Complex 1 crystallizes in the monoclinic space group C2/c (no. 15) with a = 13.618(1) Å, b = 9.585(1) Å, c = 15.165(1) Å, β = 96.780(6)°, V = 1965.6(3)Å3, Z = 4 and complex 2 in the triclinic space group P 1¯ (no. 2) with a = 12.989(2)Å, b = 14.464(2)Å, c = 18.025(3)Å, α = 90.01(1)°, β = 109.69(1)°, γ = 112.32(1)°, V = 2917.4(8) Å3, Z = 2. 1 consists of succinic acid molecules and 1D zigzag [Zn(phen)(C4H4O4)2/2] polymeric chains, in which the tetrahedrally coordinated Zn atoms are bridged by bis ‐ monodentate succinato ligands. Succinic acid molecules play an important role in supramolecular assemblies of the polymeric chains into 2D layers as well as in the stacking of 2D layers. 2 is composed of [(phen)2Zn(μ‐L)Zn(phen)2]2+ complex cations, succinate anions and hydrogen bonded water molecules. Within the divalent cations, Zn atoms are octahedrally coordinated by four N atoms of two phen ligands and two O atoms of one bis‐chelating succinato ligand. Through the intermolecular π—π stacking interactions, the complex cations form positively charged 2D layers, between which the noncoordinating succinate anions and water molecules are sandwiched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号